【題目】如圖,矩形AOBC放置在平面直角坐標(biāo)系xOy中,邊OA在y軸的正半軸上,邊OB在x軸的正半軸上,拋物線的頂點(diǎn)為F,對(duì)稱軸交AC于點(diǎn)E,且拋物線經(jīng)過點(diǎn)A(0,2),點(diǎn)C,點(diǎn)D(3,0).∠AOB的平分線是OE,交拋物線對(duì)稱軸左側(cè)于點(diǎn)H,連接HF.
(1)求該拋物線的解析式;
(2)在x軸上有動(dòng)點(diǎn)M,線段BC上有動(dòng)點(diǎn)N,求四邊形EAMN的周長(zhǎng)的最小值;
(3)該拋物線上是否存在點(diǎn)P,使得四邊形EHFP為平行四邊形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.
【答案】(1)y=x2﹣x+2;(2);(3)不存在點(diǎn)P,使得四邊形EHFP為平行四邊形,理由見解析.
【解析】
(1)根據(jù)題意可以得到C的坐標(biāo),然后根據(jù)拋物線過點(diǎn)A、C、D可以求得該拋物線的解析式;
(2)根據(jù)對(duì)稱軸和圖形可以畫出相應(yīng)的圖形,然后找到使得四邊形EAMN的周長(zhǎng)的取得最小值時(shí)的點(diǎn)M和點(diǎn)N即可,然后求出直線MN的解析式,然后直線MN與x軸的交點(diǎn)即可解答本題;
(3)根據(jù)題意作出合適的圖形,然后根據(jù)平行四邊形的性質(zhì)可知EH=FP,而通過計(jì)算看EH和FP是否相等,即可解答本題.
解:(1)∵AE∥x軸,OE平分∠AOB,
∴∠AEO=∠EOB=∠AOE,
∴AO=AE,
∵A(0,2),
∴E(2,2),
∴點(diǎn)C(4,2),
設(shè)二次函數(shù)解析式為y=ax2+bx+2,
∵C(4,2)和D(3,0)在該函數(shù)圖象上,
∴,得,
∴該拋物線的解析式為y=x2﹣x+2;
(2)作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A1,作點(diǎn)E關(guān)于直線BC的對(duì)稱點(diǎn)E1,連接A1E1,交x軸于點(diǎn)M,交線段BC于點(diǎn)N.
根據(jù)對(duì)稱與最短路徑原理,
此時(shí),四邊形AMNE周長(zhǎng)最小.
易知A1(0,﹣2),E1(6,2).
設(shè)直線A1E1的解析式為y=kx+b,
,得,
∴直線A1E1的解析式為.
當(dāng)y=0時(shí),x=3,
∴點(diǎn)M的坐標(biāo)為(3,0).
∴由勾股定理得AM=,ME1=,
∴四邊形EAMN周長(zhǎng)的最小值為AM+MN+NE+AE=AM+ME1+AE=;
(3)不存在.
理由:過點(diǎn)F作EH的平行線,交拋物線于點(diǎn)P.
易得直線OE的解析式為y=x,
∵拋物線的解析式為y=x2﹣x+2=,
∴拋物線的頂點(diǎn)F的坐標(biāo)為(2,﹣),
設(shè)直線FP的解析式為y=x+b,
將點(diǎn)F代入,得,
∴直線FP的解析式為.
,
解得或,
∴點(diǎn)P的坐標(biāo)為(,),FP=×(﹣2)=,
,
解得,或,
∵點(diǎn)H是直線y=x與拋物線左側(cè)的交點(diǎn),
∴點(diǎn)H的坐標(biāo)為(,),
∴OH=×=,
易得,OE=2,
EH=OE﹣OH=2﹣ =,
∵EH≠FP,
∴點(diǎn)P不符合要求,
∴不存在點(diǎn)P,使得四邊形EHFP為平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,當(dāng)線段AB與坐標(biāo)軸不垂直時(shí),以線段AB為斜邊作Rt△ABC,且邊BC⊥x軸,則稱AC+BC的值為線段AB的直角距離,記作L(AB);當(dāng)線段AB與坐標(biāo)軸垂直時(shí),線段AB的直角距離不存在.
(1)在平面直角坐標(biāo)系中,A(1,4),B(4,2),求L(AB).
(2)在平面直角坐標(biāo)系中,點(diǎn)A與坐標(biāo)原點(diǎn)重合,點(diǎn)B(x,y),且L(AB)=2.
①當(dāng)點(diǎn)B(x,y)在第一象限時(shí),易知AC=x,BC=y.由AC+BC=L(AB),可得y與x之間的函數(shù)關(guān)系式為 ,其中x的取值范圍是 ,在圖②中畫出這個(gè)函數(shù)的圖象.
②請(qǐng)模仿①的思考過程,分別探究點(diǎn)B在其它象限的情形,仍然在圖②中分別畫出點(diǎn)B在二、三、四象限時(shí),y與x的函數(shù)圖象.(不要求寫出探究過程)
(3)在平面直角坐標(biāo)系中,點(diǎn)A(1,1),在拋物線y=a(x﹣h)2+5上存在點(diǎn)B,使得2≤L(AB)≤4.
①當(dāng)a=﹣時(shí),直接寫出h的取值范圍.
②當(dāng)h=0,且△ABC是等腰直角三角形時(shí),直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以原點(diǎn)O為圓心,3為半徑的圓與x軸分別交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右邊),P是半徑OB上一點(diǎn),過P且垂直于AB的直線與⊙O分別交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的上方),直線AC,DB交于點(diǎn)E.若AC:CE=1:2.
(1)求點(diǎn)P的坐標(biāo);
(2)求過點(diǎn)A和點(diǎn)E,且頂點(diǎn)在直線CD上的拋物線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點(diǎn)在邊上運(yùn)動(dòng)(不運(yùn)動(dòng)至兩端點(diǎn)),射線,交于點(diǎn),為的外接圓,連結(jié),,.
(1)求的度數(shù).
(2)求證:.
(3)若正方形的邊長(zhǎng)為.
①當(dāng)為中點(diǎn)時(shí),求四邊形的面積.
②設(shè),交于點(diǎn),設(shè),,的面積分別為,,,當(dāng)平分時(shí),_________(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)用配方法解方程:x2﹣4x+2=0;
(2)如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)均在格點(diǎn)上,將△ABC繞原點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)90°得到△A1B1C1.請(qǐng)作出△A1B1C1,寫出各頂點(diǎn)的坐標(biāo),并計(jì)算△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,對(duì)角線BD所在的直線上有兩點(diǎn)E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示.
(1)求證:△ABE≌△ADF;
(2)試判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,平分,交于點(diǎn),平分,交于點(diǎn),與交于點(diǎn),連接,.
(1)求證:四邊形是菱形;
(2)若,,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(4,2)點(diǎn)M是邊BC上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),反比例函數(shù) (k>0,x>0)的圖象經(jīng)過點(diǎn)M且與邊AB交于點(diǎn)N,連接MN.
(1)當(dāng)點(diǎn)M是邊BC的中點(diǎn)時(shí),求反比例函數(shù)的表達(dá)式;
(2)在點(diǎn)M的運(yùn)動(dòng)過程中,試證明:是一個(gè)定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=x+4的圖象與反比例函數(shù)y2=的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求k.
(2)根據(jù)圖象直接寫出y1>y2時(shí),x的取值范圍.
(3)若反比例函數(shù)y2=與一次函數(shù)y1=x+4的圖象總有交點(diǎn),求k的取值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com