【題目】一次數(shù)學活動中,檢驗兩條紙帶①、②的邊線是否平行,小明和小麗采用兩種不同的方法:小明對紙帶①沿AB折疊,量得∠1=∠2=50°;小麗對紙帶②沿GH折疊,發(fā)現(xiàn)GD與GC重合,HF與HE重合. 則下列判斷正確的是( )

A. 紙帶①的邊線平行,紙帶②的邊線不平行 B. 紙帶①、②的邊線都平行

C. 紙帶①的邊線不平行,紙帶②的邊線平行 D. 紙帶①、②的邊線都不平行

【答案】C

【解析】

直接利用翻折變換的性質結合平行線的判定方法得出答案.

如圖①所示:

∵∠1=2=50°,

∴∠3=2=50°,

∴∠4=5=180°-50°-50°=80°

∴∠2≠4,

∴紙帶①的邊線不平行;

如圖②所示:∵GDGC重合,HFHE重合,

∴∠CGH=DGH=90°,∠EHG=FHG=90°,

∴∠CGH+EHG=180°,

∴紙帶②的邊線平行.

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩家商店出售同樣牌子和規(guī)格的羽毛球拍和羽毛球,每副球拍定價300元,每盒羽毛球定價40元,為慶祝五一節(jié),兩家商店開展促銷活動如下:

甲商店:所有商品9折優(yōu)惠;

乙商店:每買1副球拍贈送1盒羽毛球.

某校羽毛球隊需要購買副球拍和盒羽毛球.

(1)按上述的促銷方式,該校羽毛球隊在甲、乙兩家商店各應花費多少元?試用含的代數(shù)式表示;

(2)時,試判斷分別到甲、乙兩家商店購買球拍和羽毛球,哪家便宜?

(3)滿足什么關系時,到甲、乙兩家商店購買球拍和羽毛球的費用相同?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E在AD上,連接CE并延長與BA的延長線交于點F,若AE=2ED,則下列結論錯誤的是(
A.EF=2CE
B.SAEF= SBCF
C.BF=3CD
D.BC= AE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學為了解該校學生對四種國家一級保護動物的喜愛情況,圍繞“在丹頂鶴、大熊貓、滇金絲猴、藏羚羊四種國家一級保護動物中,你最喜歡哪一種動物?(必選且只選一種)”這一問題,在全校范圍內(nèi)隨機抽取部分同學進行問卷調查.根據(jù)調查結果繪制成如下不完整的條形統(tǒng)計圖.其中最喜歡丹頂鶴的學生人數(shù)占被抽取人數(shù)的16%;請你根據(jù)以上信息解答下列問題:
(1)在這次調查中,一共抽取了多少名學生?
(2)求在被調查的學生中,最喜歡滇金絲猴的學生有多少名?并補全條形統(tǒng)計圖;
(3)如果全校有1200名學生,請你估計全校最喜歡大熊貓的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形ABCD中,A=ABC=BCD=D=90°,AB=CD=6AD=BC=10,點E為射線AD上的一個動點,若ABEABE關于直線BE對稱,當ABC為直角三角形時,AE的長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在規(guī)格為8×8的邊長為1個單位的正方形網(wǎng)格中(每個小正方形的邊長為1),△ABC的三個頂點都在格點上,且直線m、n互相垂直.

(1)畫出△ABC關于直線n的對稱圖形△A′B′C′;

(2)直線m上存在一點P,使△APB的周長最。

在直線m上作出該點P;(保留畫圖痕跡)

②△APB的周長的最小值為   .(直接寫出結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商戶用如圖1的長方形和正方形紙板作側面和底面(長方形的寬與正方形的邊長相等),加工成如圖2的豎式與橫式兩種無蓋紙箱. (加工時接縫材料不計)

(1)該商戶原計劃用若干天加工紙箱300個,后因工作需要,將工作效率提高為原計劃的1.8倍,提前4天完成了任務,且總共比原計劃多加工紙箱60個,問原計劃幾天完成工作任務?

(2)若該商戶購進正方形紙板450張,長方形紙板1300張. 問豎式紙箱、橫式紙箱各加工多少個,恰好能將購進的紙板全部用完?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】山東全省2016年國慶假期旅游人數(shù)增長12.5%,其中尤其是鄉(xiāng)村旅游最為火爆.泰山腳下的某旅游村,為接待游客住宿需要,開設了有100張床位的旅館,當每張床位每天收費100元時,床位可全部租出,若每張床位每天收費提高20元,則相應的減少了10張床位租出,如果每張床位每天以20元為單位提高收費,為使租出的床位少且租金高,那么每張床位每天最合適的收費是(
A.140元
B.150元
C.160元
D.180元

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的周長是20,OB和OC分別平分∠ABC和∠ACB,OD⊥BC于點D,且OD=3,則△ABC的面積是(  )

A. 20 B. 25 C. 30 D. 35

查看答案和解析>>

同步練習冊答案