【題目】如圖,在平面直角坐標(biāo)系xOy中,過坐標(biāo)原點(diǎn)O的直線l與雙曲線y= 相交于點(diǎn)A(m,3).
(1)求直線l的表達(dá)式;
(2)過動(dòng)點(diǎn)P(n,0)且垂于x軸的直線與l及雙曲線的交點(diǎn)分別為B,C,當(dāng)點(diǎn)B位于點(diǎn)C上方時(shí),寫出n的取值范圍

【答案】
(1)解:∵雙曲線y= 過點(diǎn)A(m,3),

∴3=3m,解得:m=1,

∴點(diǎn)A的坐標(biāo)為(1,3).

設(shè)直線l的表達(dá)式為y=kx,

將(1,3)代入y=kx中,3=k,

∴直線l的表達(dá)式為y=3x


(2)解:﹣1<n<0或n>1
【解析】解: (2)由正、反比例函數(shù)的對(duì)稱性可知:直線l與雙曲線y= 的兩交點(diǎn)坐標(biāo)為(﹣1,﹣3)和(1,3). 觀察函數(shù)圖象可知:當(dāng)﹣1<x<0或x>1時(shí),一次函數(shù)圖象在雙曲線的上方,
∴n的取值范圍為﹣1<n<0或n>1.
所以答案是:﹣1<n<0或n>1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠工人小王某月工作的部分信息如下:

信息一:工作時(shí)間:每天上午8:00~12:00,下午14:00~18:00,每月25天;

信息二:生產(chǎn)甲、乙兩種產(chǎn)品,并且按規(guī)定每月生產(chǎn)甲產(chǎn)品的件數(shù)不少于45.

生產(chǎn)產(chǎn)品件數(shù)與所用時(shí)間之間的關(guān)系見下表:

生產(chǎn)甲產(chǎn)品件數(shù)(件)

生產(chǎn)乙產(chǎn)品件數(shù)(件)

所用總時(shí)間(分)

10

10

500

15

20

900

信息三:按件計(jì)酬,每生產(chǎn)一件甲產(chǎn)品可得6元,每生產(chǎn)一件乙產(chǎn)品可得10.

根據(jù)以上信息,回答下列問題:

(1)小王每生產(chǎn)一件甲種產(chǎn)品,每生產(chǎn)一件乙種產(chǎn)品分別需要多少分?

(2)小王該月最多能得多少元?此時(shí)生產(chǎn)甲、乙兩種產(chǎn)品分別多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,∠A=30°,以B為圓心,BC長為半徑畫弧,分別交AC,AB于D,E兩點(diǎn),并連結(jié)BD,DE. 則∠BDE的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一次函數(shù) 與反比例函數(shù) 的圖象在第一象限的交點(diǎn)為A(1,n).

(1)求m與n的值;
(2)設(shè)一次函數(shù)的圖象與x軸交于點(diǎn)B,連結(jié)OA,求∠BAO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AC和直線l分別垂直線段AB于點(diǎn)A,B.點(diǎn)P是線段AB上的一個(gè)動(dòng)點(diǎn),由A移動(dòng)到B,連接CP,過點(diǎn)P作PD⊥CP交l于點(diǎn)D,設(shè)線段AP的長為x,BD的長為y,在下列圖象中,能大致表示y與x之間函數(shù)關(guān)系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】太陽影子定位技術(shù)是通過分析視頻中物體的太陽影子變化,確定視頻拍攝地點(diǎn)的一種方法.為了確定視頻拍攝地的經(jīng)度,我們需要對(duì)比視頻中影子最短的時(shí)刻與同一天東經(jīng)120度影子最短的時(shí)刻.在一定條件下,直桿的太陽影子長度l(單位:米)與時(shí)刻t(單位:時(shí))的關(guān)系滿足函數(shù)關(guān)系l=at2+bt+c(a,b,c是常數(shù)),如圖記錄了三個(gè)時(shí)刻的數(shù)據(jù),根據(jù)上述函數(shù)模型和記錄的數(shù)據(jù),則該地影子最短時(shí),最接近的時(shí)刻t是(
A.12.75
B.13
C.13.33
D.13.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,過點(diǎn)A作⊙O的切線交BC的延長線于點(diǎn)F,連接AE.
(1)求證:∠ABC=2∠CAF;
(2)過點(diǎn)C作CM⊥AF于M點(diǎn),若CM=4,BE=6,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;④拋物線與x軸的另一個(gè)交點(diǎn)是(﹣1,0);⑤當(dāng)1<x<4時(shí),有y2<y1 ,
其中正確的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B、E、C、F在一條直線上,AB=DF,AC=DF,BE=FC.
(1)求證:△ABC≌△DFE;
(2)連接AF、BD,求證:四邊形ABDF是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案