【題目】如圖,點(diǎn)B、E、C、F在一條直線上,AB=DF,AC=DF,BE=FC.
(1)求證:△ABC≌△DFE;
(2)連接AF、BD,求證:四邊形ABDF是平行四邊形.

【答案】
(1)證明:∵BE=FC,

∴BC=EF,

在△ABC和△DFE中,

∴△ABC≌△DFE(SSS);


(2)解:連接AF、BD,如圖所示:

由(1)知△ABC≌△DFE,

∴∠ABC=∠DFE,

∴AB∥DF,

∵AB=DF,

∴四邊形ABDF是平行四邊形.


【解析】(1)由SSS證明△ABC≌△DFE即可;(2)連接AF、BD,由全等三角形的性質(zhì)得出∠ABC=∠DFE,證出AB∥DF,即可得出結(jié)論.
【考點(diǎn)精析】本題主要考查了平行四邊形的判定的相關(guān)知識(shí)點(diǎn),需要掌握兩組對(duì)邊分別平行的四邊形是平行四邊形:兩組對(duì)邊分別相等的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)角分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,過(guò)坐標(biāo)原點(diǎn)O的直線l與雙曲線y= 相交于點(diǎn)A(m,3).
(1)求直線l的表達(dá)式;
(2)過(guò)動(dòng)點(diǎn)P(n,0)且垂于x軸的直線與l及雙曲線的交點(diǎn)分別為B,C,當(dāng)點(diǎn)B位于點(diǎn)C上方時(shí),寫出n的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某市組織的大型商業(yè)演出活動(dòng)中,對(duì)團(tuán)體購(gòu)買門票實(shí)行優(yōu)惠,決定在原定票價(jià)基礎(chǔ)上每張降價(jià)80元,這樣按原定票價(jià)需花費(fèi)6000元購(gòu)買的門票張數(shù),現(xiàn)在只花費(fèi)了4800元.
(1)求每張門票的原定票價(jià);
(2)根據(jù)實(shí)際情況,活動(dòng)組織單位決定對(duì)于個(gè)人購(gòu)票也采取優(yōu)惠政策,原定票價(jià)經(jīng)過(guò)連續(xù)二次降價(jià)后降為324元,求平均每次降價(jià)的百分率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別在AC,BC上,且∠CDE=∠B,將△CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處.若AC=8,AB=10,則CD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,點(diǎn)A的坐標(biāo)為(10,0),拋物線y=ax2+bx+4過(guò)點(diǎn)B,C兩點(diǎn),且與x軸的一個(gè)交點(diǎn)為D(﹣2,0),點(diǎn)P是線段CB上的動(dòng)點(diǎn),設(shè)CP=t(0<t<10).

(1)請(qǐng)直接寫出B、C兩點(diǎn)的坐標(biāo)及拋物線的解析式;
(2)過(guò)點(diǎn)P作PE⊥BC,交拋物線于點(diǎn)E,連接BE,當(dāng)t為何值時(shí),∠PBE=∠OCD?
(3)點(diǎn)Q是x軸上的動(dòng)點(diǎn),過(guò)點(diǎn)P作PM∥BQ,交CQ于點(diǎn)M,作PN∥CQ,交BQ于點(diǎn)N,當(dāng)四邊形PMQN為正方形時(shí),請(qǐng)求出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義: 數(shù)學(xué)活動(dòng)課上,李老師給出如下定義:如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么稱這個(gè)三角形為“智慧三角形”.
理解:
(1)如圖1,已知A、B是⊙O上兩點(diǎn),請(qǐng)?jiān)趫A上找出滿足條件的點(diǎn)C,使△ABC為“智慧三角形”(畫出點(diǎn)C的位置,保留作圖痕跡);
(2)如圖2,在正方形ABCD中,E是BC的中點(diǎn),F(xiàn)是CD上一點(diǎn),且CF= CD,試判斷△AEF是否為“智慧三角形”,并說(shuō)明理由; 運(yùn)用:

(3)如圖3,在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,點(diǎn)Q是直線y=3上的一點(diǎn),若在⊙O上存在一點(diǎn)P,使得△OPQ為“智慧三角形”,當(dāng)其面積取得最小值時(shí),直接寫出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著社會(huì)經(jīng)濟(jì)的發(fā)展和城市周邊交通狀況的改善,旅游已成為人們的一種生活時(shí)尚,洪祥中學(xué)開(kāi)展以“我最喜歡的風(fēng)景區(qū)”為主題的調(diào)查活動(dòng),圍繞“在松峰山、太陽(yáng)島、二龍山和鳳凰山四個(gè)風(fēng)景區(qū)中,你最喜歡哪一個(gè)?(必選且只選一個(gè))”的問(wèn)題,在全校范圍內(nèi)隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息回答下列問(wèn)題:
(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若洪祥中學(xué)共有1350名學(xué)生,請(qǐng)你估計(jì)最喜歡太陽(yáng)島風(fēng)景區(qū)的學(xué)生有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,CD與⊙O相切于點(diǎn)D,CE⊥AD,交AD的延長(zhǎng)線于點(diǎn)E.
(1)求證:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=5,AD=2,點(diǎn)P在線段AB上運(yùn)動(dòng),設(shè)AP=x,現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)P重合,得折痕EF(點(diǎn)E、F為折痕與矩形邊的交點(diǎn)),再將紙片還原,則四邊形EPFD為菱形時(shí),x的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案