【題目】2019年,我省中考體育分值增加到55分,其中女生必考項目為八百米跑,我,F(xiàn)抽取九年級部分女生進行八百米測試成績如下:
成績 | 3′40″及以下 | 3′41~4′ | 4′01″~4′20′ | 4′21″~4′40″ | 4′41″及以上 |
等級 | A | B | C | D | E |
百分比 | 10% | 25% | m | 20% | n |
(1)求樣本容量及表格中的m和n的值
(2)求扇形統(tǒng)計圖中A等級所對的圓心角度數(shù),并補全統(tǒng)計圖.
(3)我校9年級共有女生500人.若女生八百米成績的達標成績?yōu)?/span>4分,我校九年級女生八百米成績達標的人數(shù)有多少?
【答案】(1)樣本容量為100人,m=30%,n=15%;(2)A等級所對的圓心角度數(shù)36°,補全統(tǒng)計圖如圖;見解析;(3)我校九年級女生八百米成績達標325人.
【解析】
(1)先求出樣本容量:10÷10%=100(人),所以m==30%,n==15%;
(2)A等級所對的圓心角度數(shù):=36°,B等級人數(shù):100×25%=25(人),補全統(tǒng)計圖如圖;
(3)因為C、D、E等級為達標,達標百分比:15%+20%+30%=65%,所以達標的人數(shù)500×65%=325人.
(1)樣本容量:10÷10%=100(人),
m==30%,n==15%;
(2)A等級所對的圓心角度數(shù):=36°,
B等級人數(shù):100×25%=25(人),補全統(tǒng)計圖如圖;
(3)∵達標成績?yōu)?/span>4分,
∴C、D、E等級為達標,達標百分比:15%+20%+30%=65%,
達標的人數(shù)500×65%=325(人).
答:我校九年級女生八百米成績達標325人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A1,A2,A3,… 和B1,B2,B3,… 分別在直線和x軸上.△OA1 B1,△B1 A2 B2,△B2 A3 B3,…都是等腰直角三角形.如果點A1(1,1),那么點A2019的縱坐標是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)閱讀理解:利用旋轉變換解決數(shù)學問題是一種常用的方法。如圖,點是等邊三角形內一點,,求的度數(shù)。為利用已知條件,不妨把繞點順時針旋轉60°得,連接,則的長為_______;在中,易證,且的度數(shù)為_____,綜上可得的度數(shù)為__ ;
(2)類比遷移:如圖,點是等腰內的一點,。求的度數(shù);
(3)拓展應用:如圖,在四邊形中,,請直接寫出的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,半徑OC⊥AB,OB=4,D是OB的中點,點E是弧BC上的動點,連接AE,DE.
(1)當點E是弧BC的中點時,求△ADE的面積;
(2)若 ,求AE的長;
(3)點F是半徑OC上一動點,設點E到直線OC的距離為m,當△DEF是等腰直角三角形時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,對角線AC、BD相交于O,BD=2AD,E、F、G分別是OC、OD、AB的中點,下列結論:①BE⊥AC;②EG=GF;③△EFG≌△GBE;④EA平分∠GEF;⑤四邊形BEFG是菱形.其中正確的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將矩形ABCD繞點B順時針旋轉得到矩形A1BC1D1,點A、C、D的對應點分別為A1、C1、D1
(1)當點A1落在AC上時
①如圖1,若∠CAB=60°,求證:四邊形ABD1C為平行四邊形;
②如圖2,AD1交CB于點O.若∠CAB≠60°,求證:DO=AO;
(2)如圖3,當A1D1過點C時.若BC=5,CD=3,直接寫出A1A的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線:與軸交于點,與軸交于點,拋物線經過,兩點,且與軸交于另一點.
(1)求直線及拋物線的解析式;
(2)點是拋物線上一動點,當點在直線下方的拋物線上運動時,過點作軸交于點,過點作軸交于點,求的最大值;
(3)在(2)的條件下,當的值最大時,將繞點旋轉,當點落在軸上時,直接寫出此時點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小學為每個班級配備了一種可以加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機自動停止加熱,水溫開始下降,水溫y(℃)與通電時間x(min)成反比例關系,直至水溫降至室溫,飲水機再次自動加熱,重復上述過程.設某天水溫和室溫為20℃,接通電源后,水溫y(℃)與通電時間x(min)的關系如下圖所示,回答下列問題:
(1)當0≤x≤8時,求y與x之間的函數(shù)關系式;
(2)求出圖中a的值;
(3)某天早上7:20,李老師將放滿水后的飲水機電源打開,若他想在8:00上課前能喝到不超過40℃的溫開水,問:他應在什么時間段內接水?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com