【題目】上午8時,一條船從海島A出發(fā),以15n mile/h(海里/時,1n mile1852m)的速度向正北航行,10時到達海島B處,從A、B望燈塔C,測得NAC42°,NBC84°.則從海島B到燈塔C的距離為(  )

A.45n mileB.30n mileC.20n mileD.15n mile

【答案】B

【解析】

根據(jù)三角形外角的性質(zhì),求證∠C=NAC,然后即可證明BC=AB,從而求得BC的距離.

∵∠NBC84°,∠NAC42°,

∴∠C84°﹣42°=42°.

∴∠C=∠NAC

BCAB,

∵上午8時,一條船從海島A出發(fā),以15n mile/h的速度向正北航行.10時到達海島B處,

BCAB15×230n mile

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算

我區(qū)在一項工程招標時,接到甲、乙兩個工程隊的投標書,從投標書中得知:每施工一天,甲工程隊要萬元,乙工程隊要萬元,工程小組根據(jù)甲、乙兩隊標書的測算,有三種方案:甲隊單獨完成這個工程,剛好如期完成;乙隊單獨完成這個工程要比規(guī)定時間多用5天;**********,剩下的工程由乙隊單獨做,也正好如期完成. 方案星號部分被損毀了. 已知,一個同學設規(guī)定的工期為天,根據(jù)題意列出方程:

1)請將方案中星號部分補充出來________________

2)你認為哪個方案節(jié)省工程款,請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有0、102030的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.

1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;

2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BOC=60°,點ABO延長線上的一點,OA=10cm,動點P從點A出發(fā)沿AB2cm/s的速度移動,動點Q從點O出發(fā)沿OC1cm/s的速度移動,如果點P、Q同時出發(fā),用t(s)表示移動的時間,當t=_____s時,△POQ是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC是等邊三角形,D是邊BC上的任意一點,∠ADF=60°,且DF交∠ACE的角平分線于點F.

1)求證:AC=CDCF;

2)如圖2,當點DBC的延長上時,猜想AC、CDCF的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直于x軸,垂足為點B,反比例函數(shù)y=(x<0)的圖象經(jīng)過AO的中點C,交AB于點D.若點D的坐標為(﹣4,n),且AD=3.

(1)求反比例函數(shù)y=的表達式;

(2)求經(jīng)過C、D兩點的直線所對應的函數(shù)解析式;

(3)設點E是線段CD上的動點(不與點C、D重合),過點E且平行y軸的直線l與反比例函數(shù)的圖象交于點F,求△OEF面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+(3m+1)x﹣m(m>且為實數(shù))與x軸分別交于點A、B(點B位于點A的右側且AB≠OA),與y軸交于點C.

(1)填空:點B的坐標為   ,點C的坐標為   (用含m的代數(shù)式表示);

(2)當m=3時,在直線BC上方的拋物線上有一點M,過Mx軸的垂線交直線BC于點N,求線段MN的最大值;

(3)在第四象限內(nèi)是否存在點P,使得△PCO,△POA△PAB中的任意兩三角形都相似(全等是相似的特殊情況)?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們已經(jīng)知道,形如的無理數(shù)的化簡要借助平方差公式:

例如:

下面我們來看看完全平方公式在無理數(shù)化簡中的作用。

問題提出:該如何化簡?

建立模型:形如的化簡,只要我們找到兩個數(shù),使,這樣,,那么便有:

問題解決:化簡,

解:首先把化為,這里,,由于4+3=7,

即(,

模型應用1

利用上述解決問題的方法化簡下列各式:

1;(2

模型應用2

3)在中,,,,那么邊的長為多少?(結果化成最簡)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點P、Q分別是等邊△ABC邊AB、BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQ、CP交于點M.

(1)求證:△ABQ≌△CAP;

(2)當點P、Q分別在AB、BC邊上運動時,∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數(shù).

(3)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠QMC變化嗎?若變化,請說明理由;若不變,直接寫出它的度數(shù).

查看答案和解析>>

同步練習冊答案