【題目】某數(shù)學(xué)教師為了解所教班級(jí)學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對(duì)該班部分學(xué)生進(jìn)行了一學(xué)期的跟蹤調(diào)查,將調(diào)查結(jié)果分為四類并給出相應(yīng)分?jǐn)?shù),A:很好,95分;B:較好75分;C:一般,60分;D:較差,30分.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(Ⅰ)該教師調(diào)查的總?cè)藬?shù)為 ,圖②中的m值為 ;
(Ⅱ)求樣本中分?jǐn)?shù)值的平均數(shù)、眾數(shù)和中位數(shù).
【答案】(Ⅰ)25、40;(Ⅱ)平均數(shù)為68.2分,眾數(shù)為75分,中位數(shù)為75分.
【解析】
(1)由直方圖可知A的總?cè)藬?shù)為5,再依據(jù)其所占比例20%可求解總?cè)藬?shù);由直方圖中B的人數(shù)為10及總?cè)藬?shù)可知m的值;
(2)根據(jù)平均數(shù)、眾數(shù)和中位數(shù)的定義求解即可.
(Ⅰ)該教師調(diào)查的總?cè)藬?shù)為(2+3)÷20%=25(人),
m%=×100%=40%,即m=40,
故答案為:25、40;
(Ⅱ)由條形圖知95分的有5人、75分的有10人、60分的有6人、30分的有4人,
則樣本分知的平均數(shù)為(分),
眾數(shù)為75分,中位數(shù)為第13個(gè)數(shù)據(jù),即75分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售一批名牌襯衫,平均每天可售出件,每件盈利元,為擴(kuò)大銷售增加盈利,盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)一元,市場(chǎng)每天可多售件,問(wèn)他降價(jià)多少元時(shí),才能使每天所賺的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖象中,可以表示一次函數(shù)與正比例函數(shù)(,為常數(shù),且)的圖象的是()
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,,邊、都在軸的正半軸上,,,,.反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),交邊于點(diǎn),交邊于點(diǎn).
(1)分別求出點(diǎn)、的坐標(biāo);
(2)求以、、為頂點(diǎn)的的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某小組同學(xué)為了測(cè)量對(duì)面樓AB的高度,分工合作,有的組員測(cè)得兩樓間距離為40米,有的組員在教室窗戶處測(cè)得樓頂端A的仰角為30°,底端B的俯角為10°,請(qǐng)你根據(jù)以上數(shù)據(jù),求出樓AB的高度.(精確到0.1米)
(參考數(shù)據(jù):sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD 和正方形ECGF,其中E、H分別為AD、BC中點(diǎn),連結(jié)AF、HG、AH.
(1)求證:;
(2)求證:;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,則下列結(jié)論:其中正確的有( )
①;;②方程有兩個(gè)不等的實(shí)數(shù)根;③隨的增大而增大;④.
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,BD為一條對(duì)角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,BC=1,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com