如圖,⊙O的半徑是5,△ABC是⊙O的內(nèi)接三角形,過圓心O分別作AB、BC、AC的垂線,垂足為E、FG,連接EF. 若OG=2,則EF         

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:


如圖,在平行四邊形ABCD中,∠ABC=45°,E、F分別在CD和BC的延長線上,AE∥BD,∠EFC=30°, AB=2.求CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,,相交于點,,  若,則等于_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


利用表格中的數(shù)據(jù),可求出+(4.123)2的近似值是(結(jié)果保留整數(shù)).

A.3

B.4

C.5

D.6

a

a2

17

289

4.123

13.038

18

324

4.243

13.416

19

361

4.359

13.784

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 (2×103)2×(3×10-3) =               .(結(jié)果用科學計數(shù)法表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


甲、乙、丙三位歌手進入“我是歌手”的冠、亞、季軍的決賽,他們通過抽簽來決定演唱順序.

(1)求甲第一位出場的概率;

(2)求甲比乙先出場的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


     反比例函數(shù)y (k為常數(shù),k≠0)的圖象是雙曲線.當k>0時,雙曲線兩個分支分別在

一、三象限,在每一個象限內(nèi),yx的增大而減。ê喎Q增減性);反比例函數(shù)的圖象關(guān)于

   原點對稱(簡稱對稱性).   

   這些我們熟悉的性質(zhì),可以通過說理得到嗎?

  【嘗試說理】

我們首先對反比例函數(shù)yk>0)的增減性來進行說理.

如圖,當x>0時.

在函數(shù)圖象上任意取兩點A、B,設A(x1),B(x2,),

且0<x1 x2

下面只需要比較的大。

∵0<x1 x2,∴x1-x2<0,x1 x2>0,且 k>0.

<0.即

這說明:x1 x2時,.也就是:自變量值增大了,對應的函數(shù)值反而變小了.

即:當x>0時,yx的增大而減小.

同理,當x<0時,yx的增大而減小.

(1)試說明:反比例函數(shù)y (k>0)的圖象關(guān)于原點對稱.

   【運用推廣】

(2)分別寫出二次函數(shù)yax2 (a>0,a為常數(shù))的對稱性和增減性,并進行說理.

對稱性:                                            ;

增減性:                                             

說理:

(3)對于二次函數(shù)yax2bxc (a>0,a,b,c為常數(shù)),請你從增減性的角度,簡要解釋為何當x=— 時函數(shù)取得最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


解方程 2x2-4x+1=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


一個不透明的口袋里裝有紅、黑、綠三種顏色的乒乓球(除顏色外其余都相同),其中紅球有2個,黑球有1個,綠球有3個,第一次任意摸出一個球(不放回),第二次再摸出一個球,則兩次摸到的都是紅球的概率為

A.     B.      C.        D.

查看答案和解析>>

同步練習冊答案