【題目】畫拋物線y=x2﹣2x﹣3的草圖,并說出開口方向,對稱軸,頂點坐標,增減性,最值.
【答案】見解析
【解析】試題分析:
(1)畫二次函數(shù)圖象,至少要描出5個點,其中頂點坐標必取,與坐標軸的交點,如果有,建議取,所取點,盡量在對稱軸兩邊對稱選取,否則圖象不對稱不完整.
(2)a大小決定開口方向,而a=1>0,故開口向上;對稱軸為直線 ,頂點為即(1,-4); 令x=0,則y=-3,得與y軸交點(0,-3);令y=0,得方程x2﹣2x﹣3=0,解之得 ,得與x軸兩個交點(3,0),(-1,0).
(3)列表后描點,然后用平滑曲線連接各點,就得所求作的圖象.
(4)根據(jù)草圖,增減性,最值就一目了然.
解:列表,如下:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | … |
描點、連線,如圖所示.
觀察函數(shù)圖象,可知:拋物線開口向上;對稱軸為直線x=1;頂點坐標為(1,﹣4);當x<1時,y隨x增大而減小,當x>1時,y隨x增大而增大;拋物線y=x2﹣2x﹣3存在最小值,最小值為﹣4.
科目:初中數(shù)學 來源: 題型:
【題目】一座橋如圖,橋下水面寬度AB是20米,高CD是4米.要使高為3米的船通過,則其寬度須不超過多少米.
(1)如圖1,若把橋看做是拋物線的一部分,建立如圖坐標系.
①求拋物線的解析式;
②要使高為3米的船通過,則其寬度須不超過多少米?
(2)如圖2,若把橋看做是圓的一部分.
①求圓的半徑;
②要使高為3米的船通過,則其寬度須不超過多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)(k≠0)在第一象限的圖象交于A(1,n)和B兩點.
(1)求反比例函數(shù)的解析式及點B坐標;
(2)在第一象限內(nèi),當一次函數(shù)y=-x+5的值大于反比例函數(shù)(k≠0)的值時,寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小麗想知道自家門前小河的寬度,于是她按以下辦法測出了如下數(shù)據(jù):小麗在河岸邊選取點A,在點A的對岸選取一個參照點C,測得∠CAD=30°;小麗沿岸向前走30m選取點B,并測得∠CBD=60°.請根據(jù)以上數(shù)據(jù),用你所學的數(shù)學知識,幫小麗計算小河的寬度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,A(a,0)是x軸正半軸上一點,C是第四象限一點,CB⊥y軸,交y軸負半軸于B(0,b),且(a-3)2+|b+4|=0,S四邊形AOBC=16.
(1)求C點坐標;
(2)如圖2,設D為線段OB上一動點,當AD⊥AC時,∠ODA的角平分線與∠CAE的角平分線的反向延長線交于點P,求∠APD的度數(shù).
(3)如圖3,當D點在線段OB上運動時,作DM⊥AD交BC于M點,∠BMD、∠DAO的平分線交于N點,則D點在運動過程中,∠N的大小是否變化?若不變,求出其值,若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在Rt△ABC中,AB的垂直平分線交BC于點E.若BE=2,∠B=22.5°.求∠AEC的度數(shù)及AE,AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG//DB交CB的延長線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形BEDF是菱形,求證四邊形AGBD是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,點A(﹣2,0),點B(0,2),點E,點F分別為OA,OB的中點.若正方形OEDF繞點O順時針旋轉(zhuǎn),得正方形OE′D′F′,記旋轉(zhuǎn)角為α.
(1)如圖①,當α=90°時,求AE′,BF′的長;
(2)如圖②,當α=135°時,求證AE′=BF′,且AE′⊥BF′;
(3)若直線AE′與直線BF′相交于點P,求點P的縱坐標的最大值(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成推理填空:如圖在△ABC中,已知∠1+∠2=180°,∠3=∠B,試說明∠AED=∠C.
解:∵∠1+∠EFD=180°(鄰補角定義),∠1+∠2=180°(已知。
∴ (同角的補角相等)①
∴ (內(nèi)錯角相等,兩直線平行)②
∴∠ADE=∠3( )③
∵∠3=∠B( )④
∴ (等量代換)⑤
∴DE∥BC( )⑥
∴∠AED=∠C( )⑦
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com