【題目】先化簡,再求值:(3﹣x)(3+x)+(x+1)2 , 其中x=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等邊三角形△ABC中,AQ=PQ,PR=PS,PR⊥AB 于R,PS⊥AC于S,下列說法:①點(diǎn)P在∠BAC的平分線上;②AS=AR;③QP∥AR; ④△BRP≌△QSP.其中結(jié)論正確的是 _______________.(只填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是真命題的是( )
A. 成軸對稱的兩個圖形是全等圖形 B. 面積相等的兩個三角形全等
C. 三角形的三條高線相交于三角形內(nèi)一點(diǎn) D. 內(nèi)錯角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,連接AD、DE.
(1)求證:D是BC的中點(diǎn);
(2)若DE=3,BD﹣AD=2,求⊙O的半徑;
(3)在(2)的條件下,求弦AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,一艘輪船以15海里/時的速度,由南向北航行,在A出測得小島P在北偏西方向上,兩小時后,輪船在B處測得小島P在北偏西30°方向上.在小島周圍18海里內(nèi)有暗礁,若輪船
不改變方向仍繼續(xù)向前航行,問:有無觸礁的危險?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各點(diǎn)在一次函數(shù)y=2x﹣3的圖象上的是( 。
A. ( 2,3) B. (2,1) C. (0,3) D. (3,0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A在第四象限,且它到x軸的距離等于2,到y(tǒng)軸的距離等于3,則點(diǎn)A的坐標(biāo)為( 。
A. (3,﹣2) B. (3,2) C. (2,﹣3) D. (2,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個四邊形的兩條對角線互相垂直且相等,則稱這個四邊形為“奇妙四邊形”.如圖1,四邊形ABCD中,若AC=BD,AC⊥BD,則稱四邊形ABCD為奇妙四邊形.根據(jù)“奇妙四邊形”對角線互相垂直的特征可得“奇妙四邊形”的一個重要性質(zhì):“奇妙四邊形”的面積等于兩條對角線乘積的一半.根據(jù)以上信息回答:
(1)矩形 “奇妙四邊形”(填“是”或“不是”);
(2)如圖2,已知⊙O的內(nèi)接四邊形ABCD是“奇妙四邊形”,若⊙O的半徑為6,∠BCD=60°.求“奇妙四邊形”ABCD的面積;
(3)如圖3,已知⊙O的內(nèi)接四邊形ABCD是“奇妙四邊形”作OM⊥BC于M.請猜測OM與AD的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com