【題目】在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點(diǎn)稱為格點(diǎn).若拋物線經(jīng)過圖中的三個格點(diǎn),則以這三個格點(diǎn)為頂點(diǎn)的三角形稱為拋物線的“內(nèi)接格點(diǎn)三角形”.以O為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,若拋物線與網(wǎng)格對角線OB的兩個交點(diǎn)之間的距離為,且這兩個交點(diǎn)與拋物線的頂點(diǎn)是拋物線的內(nèi)接格點(diǎn)三角形的三個頂點(diǎn),則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是( 。
A. 16 B. 15 C. 14 D. 13
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC.
(1)尺規(guī)作圖:作∠ABC的平分線,交AC于點(diǎn)D(保留作圖痕跡,不寫作法);
(2)E是底邊BC的延長線上一點(diǎn),M是BE的中點(diǎn),連接DE,DM,若CE=CD,求證:DM⊥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)如圖1,BF垂直CE于點(diǎn)F,交CD于點(diǎn)G,證明:AE=CG;
(2)如圖2,作AH垂直于CE的延長線,垂足為H,交CD的延長線于點(diǎn)M,則圖中與BE相等的線段是 ,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用36萬元購進(jìn)A、B兩種商品,銷售完后共獲利6萬元,其進(jìn)價和售價如下表:
A | B | |
進(jìn)價(元/件) | 1200 | 1000 |
售價(元/件) | 1380 | 1200 |
(1)該商場購進(jìn)A、B兩種商品各多少件;
(2)商場第二次以原進(jìn)價購進(jìn)A、B兩種商品.購進(jìn)B種商品的件數(shù)不變,而購進(jìn)A種商品的件數(shù)是第一次的2倍,A種商品按原售價出售,而B種商品打折銷售.若兩種商品銷售完畢,要使第二次經(jīng)營活動獲利不少于81600元,B種商品最低售價為每件多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線l外有一定點(diǎn)A,點(diǎn)A到直線l的距離是7cm,B是直線l上的任意一點(diǎn),則線段AB的長度可能是________cm.(寫出一個滿足條件的值即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線l1:y=﹣x2+bx+3交x軸于點(diǎn)A,B,(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,其對稱軸為x=1,拋物線l2經(jīng)過點(diǎn)A,與x軸的另一個交點(diǎn)為E(5,0),交y軸于點(diǎn)D(0,﹣ ).
(1)求拋物線l2的函數(shù)表達(dá)式;
(2)P為直線x=1上一動點(diǎn),連接PA,PC,當(dāng)PA=PC時,求點(diǎn)P的坐標(biāo);
(3)M為拋物線l2上一動點(diǎn),過點(diǎn)M作直線MN∥y軸,交拋物線l1于點(diǎn)N,求點(diǎn)M自點(diǎn)A運(yùn)動至點(diǎn)E的過程中,線段MN長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知(﹣1,y1),(1,y2)是直線y=﹣9x+6上的兩個點(diǎn),則y1,y2的大小關(guān)系是( 。
A. y1>0>y2 B. y1>y2>0 C. y2>0>y1 D. 0>y1>y2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com