【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
④ <a<
⑤b>c.
其中含所有正確結(jié)論的選項是( )
A.①③
B.①③④
C.②④⑤
D.①③④⑤
【答案】D
【解析】解:①∵函數(shù)開口方向向上,
∴a>0;
∵對稱軸在y軸右側(cè)
∴ab異號,
∵拋物線與y軸交點在y軸負(fù)半軸,
∴c<0,
∴abc>0,
故①正確;
②∵圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,
∴圖象與x軸的另一個交點為(3,0),
∴當(dāng)x=2時,y<0,
∴4a+2b+c<0,
故②錯誤;
③∵圖象與x軸交于點A(﹣1,0),
∴當(dāng)x=﹣1時,y=(﹣1)2a+b×(﹣1)+c=0,
∴a﹣b+c=0,即a=b﹣c,c=b﹣a,
∵對稱軸為直線x=1
∴ =1,即b=﹣2a,
∴c=b﹣a=(﹣2a)﹣a=﹣3a,
∴4ac﹣b2=4a(﹣3a)﹣(﹣2a)2=﹣16a2<0
∵8a>0
∴4ac﹣b2<8a
故③正確
④∵圖象與y軸的交點B在(0,﹣2)和(0,﹣1)之間,
∴﹣2<c<﹣1
∴﹣2<﹣3a<﹣1,
∴ >a> ;
故④正確
⑤∵a>0,
∴b﹣c>0,即b>c;
故⑤正確;
故選:D.
【考點精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校部分團(tuán)員參加社會公益活動,準(zhǔn)備購進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤捐助給慈善機(jī)構(gòu).根據(jù)市場調(diào)查,這種許愿瓶一段時間內(nèi)的銷售量y (單位:個)與銷售單價x(單位:元/個)之間的對應(yīng)關(guān)系如圖所示:
(1)y與x之間的函數(shù)關(guān)系是 .
(2)若許愿瓶的進(jìn)價為6元/個,按照上述市場調(diào)查的銷售規(guī)律,求銷售利潤w(單位:元)與銷售單價x (單位:元/個)之間的函數(shù)關(guān)系式;
(3)在(2)問的條件下,若許愿瓶的進(jìn)貨成本不超過900元,要想獲得最大利潤,試確定這種許愿瓶的銷售單價,并求出此時的最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k≠0)的圖象經(jīng)過點(1,0)和(0,2).
(1)當(dāng)﹣2<x≤3時,求y的取值范圍;
(2)已知點P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,BD⊥AC,E是BC延長線上的一點,且∠CED=30°.
(1)求證:DB=DE.
(2)在圖中過D作DF⊥BE交BE于F,若CF=3,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù) 的圖象經(jīng)過第二象限內(nèi)的點A(﹣1,m),AB⊥x軸于點B,△AOB的面積為2.若直線y=ax+b經(jīng)過點A,并且經(jīng)過反比例函數(shù) 的圖象上另一點C(n,一2).
(1)求直線y=ax+b的解析式;
(2)設(shè)直線y=ax+b與x軸交于點M,求AM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,分別以AC、BC為邊作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點O,則∠AOB的度數(shù)為________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求PQ的長;
(2)當(dāng)點Q在邊BC上運動時,出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)當(dāng)點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)圖象的頂點在原點O,經(jīng)過點A(1, );點F(0,1)在y軸上.直線y=﹣1與y軸交于點H.
(1)求二次函數(shù)的解析式;
(2)點P是(1)中圖象上的點,過點P作x軸的垂線與直線y=﹣1交于點M,求證:FM平分∠OFP;
(3)當(dāng)△FPM是等邊三角形時,求P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB//CD,∠B=∠ADC,點E是BC邊上的一點,且AE=DC.
(1)求證:△ABC≌△EAD ;
(2)如果AB⊥AC,求證:∠BAE= 2∠ACB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com