【題目】如圖1,有一直徑為100米的摩天輪,其最高點距離地面高度為110米,該摩天輪勻速轉(zhuǎn)動(吊艙每分鐘轉(zhuǎn)過的角度相同)一周的時間為24分鐘.
(1)如圖2,某游客所在吊艙從最低點P出發(fā),3分鐘后到達A處,此時該游客離地面高度約為多少米;(精確到整數(shù))
(2)該游客在摩天輪轉(zhuǎn)動一周的過程中,有多少時間距離地面不低于85米?(參考數(shù)據(jù):≈1.41,=1.73)
【答案】(1)15米;(2)8分
【解析】
(1)作AH⊥MN于H,求出吊艙每分鐘轉(zhuǎn)過的角度,得到∠AOH,根據(jù)余弦的定義計算,得到答案;
(2)求出OE的長度,根據(jù)正弦的定義求出∠OCE=30°,得到∠COD=120°,根據(jù)題意計算即可.
解:(1)如圖2,作AH⊥MN于H,
吊艙每分鐘轉(zhuǎn)過的角度==15°,
∴3分鐘轉(zhuǎn)過的角度為45°,
在Rt△OAH中,OH=OAcos∠AOH=50×=25,
∴HM=60﹣25≈25,
答:該游客離地面高度約為25米;
(2)如圖2,線段CD距離地面85米,
則OE=85﹣60=25,
在Rt△OEC中,∠OEC=90°,OE=25,OC=50,
∴∠OCE=30°,
∴∠COE=60°,
∴∠COD=120°,
∴距離地面不低于85米的時間為:=8(分).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點B(4,0),C(0,﹣2),對稱軸為直線x=1,與x軸的另一個交點為點A.
(1)求拋物線的解析式;
(2)點M從點A出發(fā),沿AC向點C運動,速度為1個單位長度/秒,同時點N從點B出發(fā),沿BA向點A運動,速度為2個單位長度/秒,當點M、N有一點到達終點時,運動停止,連接MN,設(shè)運動時間為t秒,當t為何值時,AMN的面積S最大,并求出S的最大值;
(3)點P在x軸上,點Q在拋物線上,是否存在點P、Q,使得以點P、Q、B、C為頂點的四邊形是平行四邊形,若存在,直接寫出所有符合條件的點P坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計.現(xiàn)從該校隨機抽取名學生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:
(1)求n的值;
(2)若該校學生共有1200人,試估計該校喜愛看電視的學生人數(shù);
(3)若調(diào)查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB為10cm,弦BC為5cm,D、E分別是∠ACB的平分線與⊙O,AB的交點,P為AB延長線上一點,且PC=PE.
(1)求AC、AD的長;
(2)試判斷直線PC與⊙O的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一塊形狀如圖的五邊形余料,,,,,.要在這塊余料中截取一塊矩形材料,其中一邊在上,并使所截矩形的面積盡可能大.
(1)若所截矩形材料的一條邊是或,求矩形材料的面積;
(2)能否截出比(1)中面積更大的矩形材料?如果能,求出這些矩形材料面積的最大值,如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1和圖2,在△ABC中,AB=13,BC=14,.
探究:如圖1,AH⊥BC于點H,則AH=___,AC=___,△ABC的面積=___.
拓展:如圖2,點D在AC上(可與點A、C重合),分別過點A、C作直線BD的垂線,垂足為E、F,設(shè)BD=x,AE=m,CF=n,(當點D與A重合時,我們認為=0).
(1)用含x、m或n的代數(shù)式表示及;
(2)求(m+n)與x的函數(shù)關(guān)系式,并求(m+n)的最大值和最小值;
(3)對給定的一個x值,有時只能確定唯一的點D,指出這樣的x的取值范圍.
發(fā)現(xiàn):請你確定一條直線,使得A、B、C三點到這條直線的距離之和最。ú槐貙懗鲞^程),并寫出這個最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課外實踐活動中,小李同學在河邊的A,B兩點處,利用測角儀分別對對岸的一觀景亭D進行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到AC的距離約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與反比例函數(shù)的圖象交于A,B兩點(點A在點B左側(cè)),已知A點的縱坐標是1:將直線沿y向上平移后的直線與反比例函數(shù)在第二象限內(nèi)交于點C,如果的面積為3,則平移后的直線的函數(shù)表達式為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com