【題目】如圖,將ABCD沿EF對折,使點(diǎn)A落在點(diǎn)C處,若∠A60°,AD4,AB8,則AE的長為__

【答案】

【解析】

過點(diǎn)CCGAB的延長線于點(diǎn)G,易證D′CF≌△ECBASA),從而可知D′FEB,CFCE,設(shè)AEx,在CEG中,利用勾股定理列出方程即可求出x的值.

過點(diǎn)CCGAB的延長線于點(diǎn)G,

ABCD中,∠D=∠EBC,ADBC,∠A=∠DCB,

由于ABCD沿EF對折,

∴∠D′=∠D=∠EBC,∠D′CE=∠A=∠DCB

D′CADBC,

∴∠D′CF+FCE=∠FCE+ECB,

∴∠D′CF=∠ECB,且∠D'=∠EBC,D'CBC

∴△D′CF≌△ECBASA

D′FEBCFCE,

DFD′F

DFEB,AECF

設(shè)AEx,則EB8xCFx,

BC4,∠CBG60°,

BGBC2

RtBCG中,由勾股定理可知:CG,

EGEB+BG8x+210x

RtCEG中,由勾股定理可知:(10x2+22x2

x

AE

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 小明遇到這樣一個問題

如圖1,ABC中,∠ACB=90°,點(diǎn)DAB上,且BD=BC,求證:∠ABC=2ACD

小明發(fā)現(xiàn),除了直接用角度計算的方法外,還可以用下面兩種方法:

方法2:如圖2,作BECD,垂足為點(diǎn)E

方法3:如圖3,作CFAB,垂足為點(diǎn)F

根據(jù)閱讀材料,從三種方法中任選一種方法,證明∠ABC=2ACD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點(diǎn)為斜邊上的一點(diǎn),連接,將沿翻折,使點(diǎn)落在點(diǎn)處,點(diǎn)為直角邊上一點(diǎn),連接,將沿翻折,點(diǎn)恰好與點(diǎn)重合.若,則_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次籃球比賽中,如圖隊(duì)員甲正在投籃.已知球出手時離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時達(dá)到最大高度4 m,設(shè)籃球運(yùn)行軌跡為拋物線,籃圈距地面3 m.

(1)建立如圖所示的平面直角坐標(biāo)系,問此球能否準(zhǔn)確投中?

(2)此時,對方隊(duì)員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,20173月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.

(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率?

(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成20176月份的快遞投遞任務(wù)?如果不能,請問至少需要增加幾名業(yè)務(wù)員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)探究:

(1)如圖1,對折矩形紙片ABCD,使ADBC重合,得到折痕EF,把紙片展開;再一次折疊紙片,使點(diǎn)A落在EF上,并使折痕經(jīng)過點(diǎn)B,得到折痕BM,同時得到線段BN,MN.請你觀察圖1,猜想∠MBN的度數(shù)是多少,并證明你的結(jié)論.

(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,探究MNBM的數(shù)量關(guān)系,寫出折疊方案,并結(jié)合方案證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用圖象法解某二元一次方程組時,在同一直角坐標(biāo)系中作出相應(yīng)的兩個一次函數(shù)的圖象(如圖所示),則所解的二元一次方程組是( ).

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A1,1),在x軸上確定點(diǎn)P,使AOP為等腰三角形,則符合條件的點(diǎn)P的個數(shù)共有(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解方程x2﹣4x=12;

(2)如圖,△ABP是由△ACEA點(diǎn)旋轉(zhuǎn)得到的,若∠APB=110°,∠B=30°,∠PAC=20°,求旋轉(zhuǎn)角的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案