【題目】1)一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離等于.如果表示數(shù)a的兩點(diǎn)之間的距離是5,那么__________;

2)若數(shù)軸上表示數(shù)a的點(diǎn)位于6之間,求的值;

3)當(dāng)a取何值時(shí),的值最小,最小值是多少?請說明理由.

【答案】1)-73;(28;(3)當(dāng)a=2時(shí),的值最小,最小值為10,理由見解析.

【解析】

1)根據(jù)題意可得,即,解關(guān)于a的方程即可;

2)利用去掉絕對(duì)值符號(hào),然后再合并即可;

3)把理解為數(shù)a表示的點(diǎn)到數(shù)-7、2、3表示的點(diǎn)的距離之和,從而得到數(shù)a表示的點(diǎn)與數(shù)2表示的點(diǎn)重合時(shí),最小,然后把a=2代入計(jì)算即可.

解:(1)根據(jù)題意,得,即,解得:;

故答案為:-73

2)∵,∴;

3)把理解為數(shù)a表示的點(diǎn)到數(shù)-7、2、3表示的點(diǎn)的距離之和,從而可得數(shù)a表示的點(diǎn)與數(shù)2表示的點(diǎn)重合時(shí),最小,

當(dāng)a=2時(shí),,

所以當(dāng)a=2時(shí),的值最小,最小值為10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AD=2,把邊BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°得到線段BP,連接AP并延長交CD于點(diǎn)E,連接PC,則三角形PCE的面積為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為的正方形組成的網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,點(diǎn)、的坐標(biāo)分別是,關(guān)于軸對(duì)稱的圖形為

畫出并寫出點(diǎn)的坐標(biāo)為________

寫出的面積為________;

點(diǎn)軸上,使的值最小,寫出點(diǎn)的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店計(jì)劃購進(jìn)A、B兩種型號(hào)的電動(dòng)自行車共30輛,其中A型電動(dòng)自行車不少于20輛,AB兩種型號(hào)電動(dòng)自行車的進(jìn)貨單價(jià)分別為2500元、3000元,售價(jià)分別為2800元、3500元,設(shè)該商店計(jì)劃購進(jìn)A型電動(dòng)自行車m輛,兩種型號(hào)的電動(dòng)自行車全部銷售后可獲利潤y元.

1)求出ym之間的函數(shù)關(guān)系式;

2)該商店如何進(jìn)貨才能獲得最大利潤?此時(shí)最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),矩形的頂點(diǎn)、,將矩形的一個(gè)角沿直線折疊,使得點(diǎn)落在對(duì)角線上的點(diǎn)處,折痕與軸交于點(diǎn).

1)線段的長度為__________;

2)求直線所對(duì)應(yīng)的函數(shù)解析式;

3)若點(diǎn)在線段上,在線段上是否存在點(diǎn),使四邊形是平行四邊形?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO直徑,EO上一點(diǎn),EAB的平分線ACO于點(diǎn)C,過C點(diǎn)作CDAE的延長線于點(diǎn)D,直線CD與射線AB交于點(diǎn)P

(1)判斷直線DPO的位置關(guān)系,并說明理由;

(2)若DC=4,⊙O的半徑為5,求PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是等邊△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:

①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;&

②點(diǎn)O與O′的距離為4;

③∠AOB=150°;

④四邊形AOBO′的面積為6+3

⑤S△AOC+S△AOB=6+.

其中正確的結(jié)論是_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=mx+b的圖象與反比例函數(shù)y=的圖象交于A(3,1),B(﹣,n)兩點(diǎn).

(1)求該反比例函數(shù)的解析式;

(2)求n的值及該一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:點(diǎn)P是△ABC內(nèi)部或邊上的點(diǎn)(頂點(diǎn)除外),在△PAB,△PBC,△PCA中,若至少有一個(gè)三角形與△ABC相似,則稱點(diǎn)P是△ABC的自相似點(diǎn).

例如:如圖1,點(diǎn)P在△ABC的內(nèi)部,∠PBC=∠A,∠PCB=∠ABC,則△BCP∽△ABC,故點(diǎn)P是△ABC的自相似點(diǎn).

請你運(yùn)用所學(xué)知識(shí),結(jié)合上述材料,解決下列問題:

在平面直角坐標(biāo)系中,點(diǎn)M是曲線y=(x>0)上的任意一點(diǎn),點(diǎn)N是x軸正半軸上的任意一點(diǎn).

(1)如圖2,點(diǎn)P是OM上一點(diǎn),∠ONP=∠M,試說明點(diǎn)P是△MON的自相似點(diǎn);當(dāng)點(diǎn)M的坐標(biāo)是(,3),點(diǎn)N的坐標(biāo)是(,0)時(shí),求點(diǎn)P的坐標(biāo);

(2)如圖3,當(dāng)點(diǎn)M的坐標(biāo)是(3,),點(diǎn)N的坐標(biāo)是(2,0)時(shí),求△MON的自相似點(diǎn)的坐標(biāo);

(3)是否存在點(diǎn)M和點(diǎn)N,使△MON無自相似點(diǎn)?若存在,請直接寫出這兩點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案