【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc<0;②a-b+c>0;③ 2a+b=0;④b2-4ac>0 ⑤a+b+c>m(am+b)+c,(m>1的實(shí)數(shù)),其中正確的結(jié)論有(

A. 1個(gè) B. 2 C. 3 D. 4個(gè)

【答案】D

【解析】圖象開(kāi)口向下,與y軸交于正半軸,對(duì)稱軸為x=1,能得到:a0c0,-b/2a =1,∴b=-2a0∴abc0,所以正確;

當(dāng)x=-1時(shí),由圖象知y0,把x=-1代入解析式得:a-b+c0∴②錯(cuò)誤;

對(duì)稱軸為x=1∴-b/2a =1,∴b=-2a∴③正確

正確,函數(shù)圖象與x軸有兩個(gè)點(diǎn),∴b2-4ac0;

⑤∵x=1時(shí),y=a+b+c(最大值),x=m時(shí),y=am2+bm+c

∵m≠1的實(shí)數(shù),∴a+b+cam2+bm+c,∴a+bmam+b)成立.∴⑤正確.

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程組:

1(用代入法)

2(用加減法)

3

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列給出的條件中,能判定四邊形ABCD為平行四邊形的是()

A.ABBCCDDAB.AB//CD,ADBC

C.AB//CDACD.AB,CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】邊長(zhǎng)為2的正方形ABCD與邊長(zhǎng)為2 的正方形AEFG按圖1位置放置,ADAE在同一直線上,ABAG在同一直線上,將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)如圖(2),線段DG與線段BE相交,交點(diǎn)為H,則△GHE與△BHD面積之和的最大值為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)A(﹣1,0)、B(3,0)兩點(diǎn).

1)求拋物線的解析式和頂點(diǎn)坐標(biāo);

2)當(dāng)0x3時(shí),求y的取值范圍;

3)點(diǎn)P為拋物線上一點(diǎn),若求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,為對(duì)角線,過(guò)點(diǎn),交于點(diǎn),點(diǎn)上,于點(diǎn),且,,則線段的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在ABC中,∠B=∠C,點(diǎn)DBC邊上,點(diǎn)EAC邊上,且∠ADE=∠AED,連結(jié)DE

1)若∠BAC100°,∠DAE40°,則∠CDE   ,此時(shí)   ;

2)若點(diǎn)DBC邊上(點(diǎn)B、C除外)運(yùn)動(dòng),試探究∠BAD與∠CDE的數(shù)量關(guān)系并說(shuō)明理由;

3)若點(diǎn)D在線段BC的延長(zhǎng)線上,點(diǎn)E在線段AC的延長(zhǎng)線上(如圖②),其余條件不變,請(qǐng)直接寫出∠BAD與∠CDE的數(shù)量關(guān)系:   ;

4)若點(diǎn)D在線段CB的延長(zhǎng)線上(如圖③)、點(diǎn)E在直線AC上,∠BAD26°,其余條件不變,則∠CDE   °(友情提醒:可利用圖③畫圖分析)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用如圖1的二維碼可以進(jìn)行身份識(shí)別.某校建立了一個(gè)身份識(shí)別系統(tǒng),圖2是某個(gè)學(xué)生的識(shí)別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數(shù)字從左到右依次記為,,,那么可以轉(zhuǎn)換為該生所在班級(jí)序號(hào),其序號(hào)為.如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號(hào)為,表示該生為5班學(xué)生.表示6班學(xué)生的識(shí)別圖案是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】網(wǎng)癮低齡化問(wèn)題已引起社會(huì)各界的高度關(guān)注,有關(guān)部門在全國(guó)范圍內(nèi)對(duì)歲的網(wǎng)癮人群進(jìn)行了簡(jiǎn)單的隨機(jī)抽樣調(diào)查,得到了如圖所示的兩個(gè)不完全統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中的信息,解決下列問(wèn)題:

)求條形統(tǒng)計(jì)圖中的值.

)求扇形統(tǒng)計(jì)圖中歲部分所占的百分比;

)據(jù)報(bào)道,目前我國(guó)歲網(wǎng)癮人數(shù)約為萬(wàn),請(qǐng)估計(jì)其中歲的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案