【題目】( 1﹣(3﹣ 0﹣2sin60°+| ﹣2|

【答案】解:( 1﹣(3﹣ 0﹣2sin60°+| ﹣2| =2﹣1﹣2× +2﹣
=1﹣ +2﹣
=3﹣2
【解析】首先計算乘方、乘法,然后從左向右依次計算,求出算式的值是多少即可.
【考點精析】通過靈活運用零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質,掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1在平面直角坐標系中,直線l1與y軸交于點A,點B(﹣3,3)也在直線l1上,將點B先向右平移1個單位長度,再向下平移2個單位長度得到點C,點C恰好也在直線l1上.

(1)求點C的坐標和直線l1的解析式;

(2)若將點C先向左平移3個單位長度,再向上平移6個單位長度得到點D,請你判斷點D是否在直線l1上;

(3)已知直線l2:y=x+b經(jīng)過點B,與y軸交于點E,求ABE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果某三角形的兩邊長分別為57,第三邊的長為偶數(shù),那么這個三角形的周長可以是(  )

A.13B.14C.15D.16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,線段AB、CD相交于點O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.試解答下列問題:

(1)在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關系:   

(2)仔細觀察,在圖2中“8字形”的個數(shù):   

(3)在圖2中,若∠D=40°,∠B=36°,∠DAB和BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于M、N.利用(1)的結論,試求P的度數(shù);

(4)如果圖2中D和B為任意角時,其他條件不變,試問P與∠D、∠B之間存在著怎樣的數(shù)量關系.(直接寫出結論即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系中任意兩點Mx1, y1),Nx2,y2),稱|x1x2|+|y1y2|M,N兩點的勾股距離,記作:dM,N).如:M23),N1,4),則dM,N=|21|+|34|=8. Px0y0)是一定點,Qxy)是直線y=kx+b上的一動點,稱dP,Q)的最小值為P到直線y=kx+b的勾股距離.則P-3,2)到直線的勾股距離為

A. B. C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點B、C、D在同一條直線上,ABCCDE都是等邊三角形.BEACF,ADCEH,求證:

1BCE≌△ACD;

2CF=CH;

3)△FCH是等邊三角形;

4FHBD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC 中,B C 的平分線交于點O, O 點作DEBC,分別交AB、ACD、E,若AB=5,AC=4,求ADE 的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

12018×202020192;(23x5x25x33÷x2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

(1) (2)

(3) (4) (5)

查看答案和解析>>

同步練習冊答案