【題目】如圖,在平面直角坐標(biāo)系中,坐標(biāo)分別是,且滿足,現(xiàn)同時(shí)將點(diǎn)分別向下平移3個(gè)單位,再向左平移1個(gè)單位,分別得到點(diǎn)的對(duì)應(yīng)點(diǎn),連接.
(1)求點(diǎn)的坐標(biāo)及四邊形的面積;
(2)在y軸上是否存在一點(diǎn),連接,使?若存在這樣的點(diǎn),求出點(diǎn)M的坐標(biāo),若不存在,試說(shuō)明理由.
【答案】(1)(2)在軸上存在點(diǎn),或使
【解析】
(1)由偶次方及絕對(duì)值的非負(fù)性可求出a、b的值,進(jìn)而即可得出點(diǎn)A、B的坐標(biāo),再根據(jù)平移的性質(zhì)可得出點(diǎn)C、D的坐標(biāo);根據(jù)坐標(biāo)與圖形的性質(zhì)求出四邊形ABCD的面積;
(2)設(shè)M坐標(biāo)為(0,),根據(jù)三角形的面積公式列出方程,解方程求出,得到點(diǎn)M的坐標(biāo);
解:(1)依題意得:
解得:
,
將點(diǎn)分別向下平移3個(gè)單位,再向左平移1個(gè)單位,
(2)假設(shè)在軸上存在點(diǎn),使
,
,
,
或
所以在軸上存在點(diǎn),使.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形MNOK和正六邊形ABCDEF邊長(zhǎng)均為1,把正方形放在正六邊形中,使OK邊與AB邊重合,如圖所示,按下列步驟操作: 將正方形在正六邊形中繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使KM邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使MN邊與CD邊重合,完成第二次旋轉(zhuǎn);…在這樣連續(xù)6次旋轉(zhuǎn)的過(guò)程中,點(diǎn)B,M間的距離可能是( )
A.1.4
B.1.1
C.0.8
D.0.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=16,O為AB中點(diǎn),點(diǎn)C在線段OB上(不與點(diǎn)O,B重合),將OC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧 于點(diǎn)P,Q,且點(diǎn)P,Q在AB異側(cè),連接OP.
(1)求證:AP=BQ;
(2)當(dāng)BQ=4 時(shí),求 的長(zhǎng)(結(jié)果保留π);
(3)若△APO的外心在扇形COD的內(nèi)部,求OC的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BC的垂直平分線分別交AB、BC于點(diǎn)D和點(diǎn)E,連接CD,AC=DC,∠B=25°,則∠ACD的度數(shù)是( )
A. 50° B. 65° C. 80° D. 100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.
(1)在圖中畫(huà)出與△ABC關(guān)于直線l成軸對(duì)稱的△AB′C′;
(2)求△ABC的面積為_______;
(3)在直線l上找一點(diǎn)P,使PB+PC的長(zhǎng)最短,則這個(gè)最短長(zhǎng)度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡.
如圖,△ABC中,∠A=60°.
(1)試求作一點(diǎn)P,使得點(diǎn)P到B、C兩點(diǎn)的距離相等,并且到AB、BC兩邊的距離也相等(尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡).
(2)在(1)的條件下,若∠ACP=15°,求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,EF∥AD,∠1=∠2,∠BAC="70"o,求∠AGD。
解:∵EF∥AD,
∴∠2=∠3( )
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥DG ( )
∴∠BAC+ ="180"o( )
∵∠BAC=70 o,∴∠AGD= 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的方格紙中每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣1,0)、B(4,﹣1)、C(3,2).
(1)在所給的直角坐標(biāo)系中畫(huà)出△ABC;
(2)把△ABC向左平移3個(gè)單位,再向上平移2個(gè)單位得到△A′B′C′,畫(huà)出△A′B′C′并寫(xiě)出點(diǎn)C′的坐標(biāo);
(3)求△A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于實(shí)數(shù)p,q,我們用符號(hào)min{p,q}表示p,q兩數(shù)中較小的數(shù),如min{1,2}=1,因此,min{﹣ ,﹣ }=;若min{(x﹣1)2 , x2}=1,則x= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com