【題目】如圖,已知AB‖CD,∠EAF =∠EAB,∠ECF=∠ECD ,則∠AFC與∠AEC之間的數(shù)量關(guān)系是_____________________________

【答案】4AFC=3AEC

【解析】分析:連接AC,設(shè)∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,然后根據(jù)平行線的性質(zhì)得出∠AEC=4(x°+y°),∠AFC=3(x°+y°),從而得出答案.

詳解:連接AC,設(shè)∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,

∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,

∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°)

∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),

∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),

∴4∠AFC=3∠AEC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架5米長的梯子AB斜靠在一面墻上,梯子底端B到墻底的垂直距離BC3米.

(1)求這個梯子的頂端A到地面的距離AC的值;

(2)如果梯子的頂端A沿墻AC豎直下滑1米到點D處,求梯子的底端B在水平方向滑動了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C在以AB為直徑的⊙O上,AD與過點C的切線垂直,垂足為點D,AD交⊙O于點E.
(1)求證:AC平分∠DAB;
(2)連接CE,若CE=6,AC=8,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某酒店有三人間、雙人間客房若干,各種房型每天的收費標準如下:

普通(元/間) 

 豪華(元/間)

三人間 

160

400

雙人間

140

300

一個50人的旅游團到該酒店入住,選擇了一些三人普通間和雙人豪華間入住,且恰好住滿.已知該旅游團當日住宿費用共計4020元,問該旅游團入住的三人普通間和雙人豪華間各為幾間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊ABCD中,E、F分別是AB、DC上的點,且AE=CF,

(1)求證:ADE≌△CBF;

(2) 當∠DEB=90°時,試說明四邊形DEBF為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=65時,y=55;x=75時,y=45.
(1)求一次函數(shù)y=kx+b的表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
(3)若該商場獲得利潤不低于500元,試確定銷售單價x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=45°,AB=4cm,將△ABC繞點B按逆時針方向旋轉(zhuǎn)45°后得到△A′BC′,則陰影部分的面積為cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E為矩形ABCD中AD邊中點,將矩形ABCD沿CE折疊,使點D落在矩形內(nèi)部的點F處,延長CF交AB于點G,連接AF

(1)求證:AF∥CE;
(2)探究線段AF,EF,EC之間的數(shù)量關(guān)系,并說明理由;
(3)若BC=6,BG=8,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC≌△ABD,點E在邊AB上,CE∥BD,連接DE.求證:

(1)∠CEB=∠CBE;
(2)四邊形BCED是菱形

查看答案和解析>>

同步練習(xí)冊答案