【題目】如圖,△ABC≌△ABD,點E在邊AB上,CE∥BD,連接DE.求證:

(1)∠CEB=∠CBE;
(2)四邊形BCED是菱形

【答案】
(1)

證明:∵△ABC≌△ABD,

∴∠ABC=∠ABD,

∵CE∥BD,

∴∠CEB=∠DBE,

∴∠CEB=∠CBE.


(2)

證明:∵△ABC≌△ABD,

∴BC=BD,

∵∠CEB=∠CBE,

∴CE=CB,

∴CE=BD

∵CE∥BD,

∴四邊形CEDB是平行四邊形,

∵BC=BD,

∴四邊形CEDB是菱形


【解析】(1)欲證明∠CEB=∠CBE,只要證明∠CEB=∠ABD,∠CBE=∠ABD即可.(2)先證明四邊形CEDB是平行四邊形,再根據(jù)BC=BD即可判定. 本題考查全等三角形的性質(zhì)、菱形的判定、平行四邊形的判定等知識,熟練掌握全等三角形的性質(zhì)是解題的關(guān)鍵,記住平行四邊形、菱形的判定方法,屬于中考常考題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB‖CD,∠EAF =∠EAB,∠ECF=∠ECD ,則∠AFC與∠AEC之間的數(shù)量關(guān)系是_____________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在Rt△ABC中,∠C=90°,AB=5cm,BC=3cm,把Rt△ABC繞AB旋轉(zhuǎn)一周,所得幾何體的表面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+2x﹣3的圖象如圖所示,點A(x1 , y1),B(x2 , y2)是該二次函數(shù)圖象上的兩點,其中﹣3≤x1<x2≤0,則下列結(jié)論正確的是( )

A.y1<y2
B.y1>y2
C.y的最小值是﹣3
D.y的最小值是﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩名運動員,選擇一人參加市射擊比賽,在選拔賽上,每人打10發(fā),其中甲的射擊成績分別為10、8、7、9、8、10、10、9、10、9

計算甲的射擊成績的方差;

經(jīng)過計算,乙射擊的平均成績是9,方差為1.4,你認(rèn)為選誰去參加市射擊比賽合適,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)決定在學(xué)生中開展丟沙包、打籃球、跳大繩和踢毽球四種項目的活動,為了解學(xué)生對四種項目的喜歡情況,隨機(jī)調(diào)查了該校m名學(xué)生最喜歡的一種項目(每名學(xué)生必選且只能選擇四種活動項目的一種),并將調(diào)查結(jié)果繪制成如下的不完整的統(tǒng)計圖表:
學(xué)生最喜歡的活動項目的人數(shù)統(tǒng)計表

項目

學(xué)生數(shù)(名)

百分比

丟沙包

20

10%

打籃球

60

p%

跳大繩

n

40%

踢毽球

40

20%

根據(jù)圖表中提供的信息,解答下列問題:

(1)m= , n= , p=
(2)請根據(jù)以上信息直接補(bǔ)全條形統(tǒng)計圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請你估計該校2000名學(xué)生中有多少名學(xué)生最喜歡跳大繩.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點A按順時針方向旋轉(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<180°),點B的對應(yīng)點為點D,點C的對應(yīng)點為點E,連接BD,BE.

(1)如圖,當(dāng)α=60°時,延長BE交AD于點F.
①求證:△ABD是等邊三角形;
②求證:BF⊥AD,AF=DF;
③請直接寫出BE的長;
(2)在旋轉(zhuǎn)過程中,過點D作DG垂直于直線AB,垂足為點G,連接CE,當(dāng)∠DAG=∠ACB,且線段DG與線段AE無公共點時,請直接寫出BE+CE的值.
溫馨提示:考生可以根據(jù)題意,在備用圖中補(bǔ)充圖形,以便作答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知線段AB=12cm,點C為線段AB上的一動點,點D,E分別是ACBC中點.

1)若點C恰好是AB的中點,則DE=_______cm;

2)若AC=4cm,求DE的長;

3)試說明無論AC取何值(不超過12cm),DE的長不變;

4)如圖②,已知∠AOB=120°,過角的內(nèi)部任一點C畫射線OC.ODOE分別平分∠AOC和∠BOC.試說明∠DOE的度數(shù)與射線OC的位置無關(guān).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個多面體的表面展開圖,每個面上都標(biāo)注了字母(字母在多面體的外表面),請根據(jù)要求回答問題.

(1)如果D面在多面體的左面,那么F面在哪里?

(2)B面和哪一面是相對的面?

(3)如果C面在前面,從上面看到的是D,那么從左面能看到哪一面?

查看答案和解析>>

同步練習(xí)冊答案