精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平行四邊ABCD中,E、F分別是AB、DC上的點,且AE=CF,

(1)求證:ADE≌△CBF;

(2) 當∠DEB=90°時,試說明四邊形DEBF為矩形.

【答案】(1)證明見解析(2)四邊形DEBF是矩形.

【解析】試題分析:(1)利用平行四邊形的性質,根據SAS即可證明.

(2)首先證明四邊形DEBF是矩形,由∠DEB=90°,即可推出四邊形DEBF是矩形.

試題解析:(1)證明:∵四邊形ABCD是平行四邊形,

AD=CB,A=C,

ADECBF中,

∴△ADE≌△CBF(SAS).

(2)∵四邊形ABCD是平行四邊形,

AB=CD,ABCD,

AE=CF,

BE=DF,

∴四邊形DEBF是平行四邊形,

∵∠DEB=90°,

∴四邊形DEBF是矩形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線l1與x軸交于點A,B,與y軸交于點C,l1的解析式為y= x2﹣2,若將拋物線l1平移,使平移后的拋物線l2經過點A,對稱軸為直線x=﹣6,拋物線l2與x軸的另一個交點是E,頂點是D,連結OD,AD,ED.

(1)求拋物線l2的解析式;
(2)求證:△ADE∽△DOE;
(3)半徑為1的⊙P的圓心P沿著直線x=﹣6從點D運動到F(﹣6,0),運動速度為1單位/秒,運動時間為t秒,⊙P繞著點C順時針旋轉90°得⊙P1 , 隨著⊙P的運動,求P1的運動路徑長以及當⊙P1與y軸相切的時候t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:在數軸上A點表示數a,B點示數b,C點表示數c,b是最小的正整數,且a、c滿足|a+2|+(c-7)2=0.

(1)a=______,b=______,c=______;

(2)若將數軸折疊,使得A點與C點重合,則點B與數______表示的點重合;

(3)A、B、C開始在數軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則AB=______,AC=______,BC=______.(用含t的代數式表示).

(4)直接寫出點BAC中點時的t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】4月26日,2015黃河口(東營)國際馬拉松比賽拉開帷幕,中央電視臺體育頻道用直升機航拍技術全程直播.如圖,在直升機的鏡頭下,觀測馬拉松景觀大道A處的俯角為30°,B處的俯角為45°.如果此時直升機鏡頭C處的高度CD為200米,點A、D、B在同一直線上,則AB兩點的距離是米.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小彬和小明每天早晨堅持跑步,小彬每秒跑4米,小明每秒跑6米.

(1)如果他們站在百米跑道的兩端同時相向起跑,那么幾秒后兩人相遇?

(2)如果小明站在百米跑道的起點處,小彬站在他前面10米處,兩人同時同向起跑,幾秒后小明能追上小彬?

(2)如果他們都站在四百米環(huán)形跑道的起點處,兩人同時同向起跑,幾分鐘后他們再次相遇?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB‖CD,∠EAF =∠EAB,∠ECF=∠ECD ,則∠AFC與∠AEC之間的數量關系是_____________________________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖1,紙片ABCD中,AD=5,,過點A作AE⊥BC,垂足為E,沿AE剪下,將它平移至的位置,拼成四邊形,則四邊形的形狀為_____

A.平行四邊形 B.菱形 C.矩形 D.正方形

(2)如圖2,在(1)中的四邊形中,在EF上取一點P,EP=4,剪下,將它平移至的位置,拼成四邊形。①求證:四邊形是菱形;②求四邊形的兩條對角線的長。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,∠ACB的平分線交AB于D,已知∠DCB=2∠B,求∠ACD的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有甲、乙兩名運動員,選擇一人參加市射擊比賽,在選拔賽上,每人打10發(fā),其中甲的射擊成績分別為10、8、7、9、8、10、10、9、10、9

計算甲的射擊成績的方差;

經過計算,乙射擊的平均成績是9,方差為1.4,你認為選誰去參加市射擊比賽合適,為什么?

查看答案和解析>>

同步練習冊答案