【題目】在平面直角坐標(biāo)系中,的位置如圖所示.

1)畫(huà)出先向右平移3個(gè)單位,再向下平移6個(gè)單位后得到的,并寫(xiě)出,各頂點(diǎn)的坐標(biāo);

2)畫(huà)出繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得到的,并寫(xiě)出,各頂點(diǎn)的坐標(biāo).

【答案】1)圖見(jiàn)解析,A10,-4),B13-2),C13,-4);(2)圖見(jiàn)解析,A20-1),B2-22),C202

【解析】

1)根據(jù)平移變換的定義作出平移后的對(duì)應(yīng)點(diǎn),順次連接即可,結(jié)合圖形即可得到點(diǎn)的坐標(biāo);

2)根據(jù)旋轉(zhuǎn)變換的定義作出旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn),順次連接即可,結(jié)合圖形即可得到點(diǎn)的坐標(biāo).

解:(1)如圖所示,為所求,A10,-4),B13-2),C13,-4),

2)如圖所示,為所求,A20-1),B2-2,2),C20,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀下列解題過(guò)程,然后解答后面兩個(gè)問(wèn)題.

解方程:|x-3|=2

解:當(dāng)x-3≥0時(shí),原方程可化為x-3=2,解得x=5

當(dāng)x-30時(shí),原方程可化為x-3=-2,解得x=1

所以原方程的解是x=5x=1

1)解方程:|3x-2|-4=0

2)解關(guān)于x的方程:|x-2|=b+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)你完成下面的證明:

已知:如圖,∠GFB+B180°,∠1=∠3,

求證:FCED

證明:∵∠GFB+B180°

FGBC   

∴∠3      ),

又∵∠1=∠3(已知)

∴∠1   (等量代換)

FCED   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)完全相同的直角三角形紙片△ABC、△DEF,如圖1放置,點(diǎn)B、D重合,點(diǎn)FBC上,ABEF交于點(diǎn)G∠C=∠EFB=90°,∠E=∠ABC=30°,現(xiàn)將圖1中的△ABC繞點(diǎn)F按每秒10°的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)180°,在旋轉(zhuǎn)的過(guò)程中,△ABC恰有一邊與DE平行的時(shí)間為___________s

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫(huà)圖并填空:如圖,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn).

(1)將△ABC向左平移4格,再向下平移1格,請(qǐng)?jiān)趫D中畫(huà)出平移后的△A'B'C';

(2)利用網(wǎng)格線在圖中畫(huà)出△ABC的中線CD,高線AE

(3)A'B'C'的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】位于南岸區(qū)黃桷埡的文峰塔,有著“平安寶塔”之稱(chēng).某校數(shù)學(xué)社團(tuán)對(duì)其高度 AB進(jìn)行了測(cè)量.如圖,他們從塔底A的點(diǎn)B出發(fā),沿水平方向行走了13米,到達(dá)點(diǎn)C,然后沿斜坡CD繼續(xù)前進(jìn)到達(dá)點(diǎn)D處,已知DC=BC.在點(diǎn)D處用測(cè)角儀測(cè)得塔頂A的仰角為42°(點(diǎn)A,B,C,D,E在同一平面內(nèi)).其中測(cè)角儀及其支架DE高度約為0.5米,斜坡CD的坡度(或坡比)i=1:2.4,那么文峰塔的高度AB約為( )(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

A.22.5 米
B.24.0 米
C.28.0 米
D.33.3 米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】的直角三角形,的中點(diǎn)分別是點(diǎn)點(diǎn),動(dòng)點(diǎn)從點(diǎn)出發(fā),按箭頭方向通過(guò);的速度運(yùn)動(dòng),設(shè)點(diǎn)從開(kāi)始運(yùn)動(dòng)的距離為的面積為試回答以下問(wèn)題:

(1)點(diǎn)從出發(fā)到停止,寫(xiě)出的函數(shù)關(guān)系式并寫(xiě)出的取值范圍.

(2)求出點(diǎn)從出發(fā)后幾秒時(shí),

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABOC,A(0,4),B(ab),C(c,0),并且a,c滿足c+10.一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AB上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)O出發(fā)在線段OC上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)A,O同時(shí)出發(fā),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)Q隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).

1)求B,C兩點(diǎn)的坐標(biāo);

2)當(dāng)t為何值時(shí),四邊形PQCB是平行四邊形?

3)點(diǎn)D為線段OC的中點(diǎn),當(dāng)t為何值時(shí),OPD是等腰三角形?直接寫(xiě)出t的所有值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)O為對(duì)角線AC的中點(diǎn),過(guò)點(diǎn)o作射線OG、ON分別交AB,BC于點(diǎn)E,F(xiàn),且∠EOF=90°,BO、EF交于點(diǎn)P.則下列結(jié)論中:
⑴圖形中全等的三角形只有兩對(duì);
⑵正方形ABCD的面積等于四邊形OEBF面積的4倍;
⑶BE+BF= OA;
⑷AE2+CF2=2OPOB.
正確的結(jié)論有( )個(gè).

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案