【題目】某件商品的成本價為15元,據(jù)市場調(diào)查得知,每天的銷量y(件)與價格x(元)有下列關(guān)系:

銷售價格x

20

25

30

50

銷售量y

15

12

10

6


(1)根據(jù)表中數(shù)據(jù),在直角坐標(biāo)系中描出實(shí)數(shù)對(x,y)的對應(yīng)點(diǎn),并畫出圖象;
(2)猜測確定y與x間的關(guān)系式;
(3)設(shè)總利潤為W元,試求出W與x之間的函數(shù)關(guān)系式,若售價不超過30元,求出當(dāng)日的銷售單價定為多少時,才能獲得最大利潤?

【答案】
(1)解:根據(jù)描點(diǎn)法作函數(shù)的圖象,先描點(diǎn),連線即可得圖象,


(2)解:觀察表中數(shù)據(jù)可得,x與y得積為常數(shù),判斷為反比例函數(shù),

根據(jù)數(shù)據(jù),易得K=20×15=300,

故其解析式為


(3)解: =

當(dāng)x≤30時,因?yàn)閣隨x增大而增大,

∴當(dāng)x=30時,w最大=150.


【解析】(1)根據(jù)表中數(shù)據(jù)畫出函數(shù)圖像即可,此圖像在第一象限。
(2)由表中x與y的對應(yīng)值的規(guī)律,或觀察圖像可知此函數(shù)是反比例函數(shù),代入x、y的對應(yīng)值即可求得此函數(shù)的解析式。
(3)總利潤=銷售量×(售價-成本價),列函數(shù)解析式,根據(jù)售價不超過30元,即可求得結(jié)果。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點(diǎn)D是以點(diǎn)A為圓心4為半徑的圓上一點(diǎn),連接BD,點(diǎn)M為BD中點(diǎn),線段CM長度的最大值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把長方形紙片ABCD沿EF折疊后,使得點(diǎn)D落在點(diǎn)H的位置上,點(diǎn)C恰好落在邊AD上的點(diǎn)G處,連接EG

1)△GEF是等腰三角形嗎?請說明理由;

2)若CD4GD8,求HF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A、BC是數(shù)軸上三點(diǎn),O為原點(diǎn).點(diǎn)C對應(yīng)的數(shù)為6,BC4AB12

1)求點(diǎn)A、B對應(yīng)的數(shù);

2)動點(diǎn)PQ分別同時從A、C出發(fā),分別以每秒6個單位和3個單位的速度沿?cái)?shù)軸正方向運(yùn)動.MAP的中點(diǎn),NCQ上,且CNCQ,設(shè)運(yùn)動時間為tt0).

①求點(diǎn)M、N對應(yīng)的數(shù)(用含t的式子表示); t為何值時,OM2BN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).

(1)求反比例函數(shù)的解析式;

(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;

(3)若雙曲線上點(diǎn)C(2,n)沿OA方向平移個單位長度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),對角線AC上有一點(diǎn)P使PE+PD的和最小,這個最小值為( )

A. B. C. 3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,∠ABC=90,AE∥CDBCE,OAC的中點(diǎn),AB=,AD=2,BC=3,下列結(jié)論:

①∠CAE=30;②AC=2AB;③SADC=2SABE;④BO⊥CD,其中正確的是()

A. ①②③ B. ②③④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ABAC,∠ABC=70°

(1)用直尺和圓規(guī)作∠ABC的平分線BDAC于點(diǎn)D(保留作圖痕跡,不要求寫作法)

(2)在(1)的條件下,∠BDC   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD(AD>AB)中,將它折疊,使點(diǎn)A與點(diǎn)C重合,折痕EF交AD于點(diǎn)E,交BC于點(diǎn)F,交AC于點(diǎn)O,連結(jié)AF,CE.

(1)求證:四邊形AFCE是菱形;

(2)若AE=8,△ABF的面積為9,求AB+BF的值.

查看答案和解析>>

同步練習(xí)冊答案