【題目】問題情境:如圖①,在△ABD與△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易證:△ABD≌△CAE.(不需要證明)
特例探究:如圖②,在等邊△ABC中,點D、E分別在邊BC、AB上,且BD=AE,AD與CE交于點F.求證:△ABD≌△CAE.
歸納證明:如圖③,在等邊△ABC中,點D、E分別在邊CB、BA的延長線上,且BD=AE.△ABD與△CAE是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展應用:如圖④,在等腰三角形中,AB=AC,點O是AB邊的垂直平分線與AC的交點,點D、E分別在OB、BA的延長線上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度數.
【答案】證明見解析,∠BAD=18°
【解析】特例探究:利用等邊三角形的三條邊都相等、三個內角都是60°的性質推知AB=AC,∠DBA=∠EAC=60°,然后結合已知條件BD=AE,利用全等三角形的判定定理SAS證得△ABD≌△CAE.
歸納證明:△ABD與△CAE全等.利用等邊三角形的三條邊都相等、三個內角都是60°的性質以及三角形外角定理推知AB=AC,∠DBA=∠EAC=120°,然后結合已知條件BD=AE,利用全等三角形的判定定理SAS證得△ABD≌△CAE;
拓展應用:利用全等三角形(△ABD≌△CAE)的對應角∠BDA=∠AEC=32°,然后由三角形的外角定理求得∠BAD的度數.
解:特例探究:
證明:∵△ABC是等邊三角形,
∴AB=AC,∠DBA=∠EAC=60°,
在△ABD與△CAE中,,
∴△ABD≌△CAE(SAS);
歸納證明:
△ABD與△CAE全等.理由如下:
∵在等邊△ABC中,AB=AC,∠ABC=∠BAC=60°,
∴∠DBA=∠EAC=120°.
在△ABD與△CAE中,,
∴△ABD≌△CAE(SAS);
拓展應用:
∵點O在AB的垂直平分線上,
∴OA=OB,
∴∠OBA=∠BAC=50°,
∴∠EAC=∠DBC.
在△ABD與△CAE中,,
∴△ABD≌△CAE(SAS),
∴∠BDA=∠AEC=32°,
∴∠BAD=∠OBA﹣∠BDA=18°.
科目:初中數學 來源: 題型:
【題目】如圖,已知直線 與x軸、y軸相交于P、Q兩點,與y=的圖像相交于A(-2,m)、B(1,n)兩點,連接OA、OB.給出下列結論: ①k1k2<0;②m+n=0; ③S△AOP= S△BOQ;④不等式k1x+b>的解集是x<-2或0<x<1,其中正確的結論的序號是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】汽車在勻速行駛過程中,路程s、速度v、時間t之間的關系為s=vt,下列說法正確的是( 。
A. s、v、t都是變量B. s、t是變量,v是常量
C. v、t是變量,s是常量D. s、v是變量,t是常量
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A(﹣2,y1),B(1,y2)都在直線y=﹣2x+2上,則y1、y2的大小關系是( 。
A. y1=y2B. y1<y2C. y1>y2D. y1≥y2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“激情同在”第23屆冬奧會于2018年2月在韓國平昌郡舉行,場館的建筑面積約是358 000平方米,將358 000用科學記數法表示為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明編了一個程序:輸入任何一個有理數時,顯示屏上的結果總等于輸入的有理數的平方減去2得到的差。若他第一次輸入-3,然后再將所得的結果輸入,這時顯示屏出現的結果是____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】京沈高速鐵路赤峰至喀左段正在建設中,甲、乙兩個工程隊計劃參與一項工程建設,甲隊單獨施工30天完成該項工程的,這時乙隊加入,兩隊還需同時施工15天,才能完成該項工程.
(1)若乙隊單獨施工,需要多少天才能完成該項工程?
(2)若甲隊參與該項工程施工的時間不超過36天,則乙隊至少施工多少天才能完成該項工程?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com