【題目】AB是⊙O的直徑,∠DAB=22.5°,延長AB到點C,使得∠ACD=45°.
(1)求證:CD是⊙O的切線;
(2)若AB=2 ,求BC的長.

【答案】
(1)證明:連接DO,

∵AO=DO,

∴∠DAO=∠ADO=22.5°.

∴∠DOC=45°.

又∵∠ACD=2∠DAB,

∴∠ACD=∠DOC=45°.

∴∠ODC=90°.

又 OD是⊙O的半徑,

∴CD是⊙O的切線


(2)解:連接DB,

∵直徑AB=2 ,△OCD為等腰直角三角形,

∴CD=OD= ,OC= =2,

∴BC=OC﹣OB=2﹣


【解析】(1)連接DO,由三角形的外角與內(nèi)角的關系易得∠DOC=∠C=45°,故有∠ODC=90°,即CD是圓的切線.(2)由1知,CD=OD= AB,由弦切角定理可得∠CDB=∠A,故有△ADC∽△DBC,得到CD2=CBCA=CB(CB+AB)而求得BC的值.
【考點精析】利用圓周角定理和切線的判定定理對題目進行判斷即可得到答案,需要熟知頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點,過點DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O,有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G,則下列結(jié)論中正確的是
(1)EF= OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)BE+BF= OA;(4)在旋轉(zhuǎn)過程中,當△BEF與△COF的面積之和最大時,AE=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將Rt△ABC繞點A按順時針方向旋轉(zhuǎn)一定角度得到Rt△ADE,點B的對應點D恰好落在BC邊上,若DE=2,∠B=60°,則CD的長為(
A.0.5
B.1.5
C.
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將一圓形紙片向右、向上兩次對折后得到如圖2所示的扇形AOB.已知OA=6,取OA的中點C,過點C作CD⊥OA交 于點D,點F是 上一點.若將扇形BOD沿OD翻折,點B恰好與點F重合,用剪刀沿著線段BD,DF,F(xiàn)A依次剪下,則剪下的紙片(形狀同陰影圖形)面積之和為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(1) (2)

(3) (4)(3x+y)(-y+3x)

(5)2a(a-2a3)-(-3a2)2; (6)(x-3)(x+2)-(x+1)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直線 l 上依次擺放著七個正方形(如圖所示),已知斜放置的三個正方形的面積分別 a,b,c,正放置的四個正方形的面積依次為 S1,S2,S3,S4,則 S1+S2+S3+S4=( )

A. a+b B. b+c C. a+c D. a+b+c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】宜賓市某化工廠,現(xiàn)有A種原料52千克,B種原料64千克,現(xiàn)用這些原料生產(chǎn)甲、乙兩種產(chǎn)品共20件.已知生產(chǎn)1件甲種產(chǎn)品需要A種原料3千克,B種原料2千克;生產(chǎn)1件乙種產(chǎn)品需要A種原料2千克,B種原料4千克,則生產(chǎn)方案的種數(shù)為( 。
A.4
B.5
C.6
D.7

查看答案和解析>>

同步練習冊答案