【題目】1)已知2a-1a+5m的平方根,求m的值;

2)若的整數(shù)部分為,小數(shù)部分為,求的值;

3)若|b|互為相反數(shù),解關(guān)于x的方程(2a4)x2b260.

【答案】(1) m=m=;(2)6;(3)x=

【解析】

12a-1a+5m的平方根,則存在兩種情況2a-1=a+52a-1=-a+5),分別求出a的值即可解答.

(2)首先得出的取值范圍,進(jìn)而得出a,b的值,即可代入求出即可.

3)根據(jù)非負(fù)數(shù)的性質(zhì)得出a、b的值,再代入方程利用直接開(kāi)平方法求解可得.

(1)根據(jù)題意可得

2a-1=a+52a-1=-a+5

解得a=6a=

m=m=

2)∵

,

的整數(shù)部分為:a=3,小數(shù)部分為:b=-3

.

故答案為:6.

(3)|b|互為相反數(shù),

+|b|=0,

,

a=4,b=

則原方程化簡(jiǎn)為:,

故答案為:x=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀,再解答.

我們?cè)谂袛帱c(diǎn)(7,20)是否在直線y2x6上時(shí),常用的方法是:把x=-7代入y2x6中,由2×(7)6=-8≠20,判斷出點(diǎn)(7,20)不在直線y2x6上.小明由此方法并根據(jù)“兩點(diǎn)確定一條直線”,推斷出點(diǎn)A(12),B(3,4)C(1,6)三點(diǎn)可以確定一個(gè)圓,你認(rèn)為他的推斷正確嗎?請(qǐng)你利用上述方法說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)將ABC向上平移3個(gè)單位后,得到A1B1C1,請(qǐng)畫(huà)出A1B1C1,并直接寫(xiě)出點(diǎn)A1的坐標(biāo).

(2)將ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,請(qǐng)畫(huà)出旋轉(zhuǎn)后的A2B2C2,并求點(diǎn)B所經(jīng)過(guò)的路徑長(zhǎng)(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了測(cè)量路燈(OS)的高度,把一根長(zhǎng)1.5米的竹竿(AB)豎直立在水平地面上,測(cè)得竹竿的影子(BC)長(zhǎng)為1米,然后拿竹竿向遠(yuǎn)離路燈方向走了3.2米(BB),再把竹竿豎立在地面上,測(cè)得竹竿的影長(zhǎng)(BC)為1.8米,求路燈離地面的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,EAB邊上的點(diǎn),BE=BC,將△ADE沿DE翻折,點(diǎn)A的對(duì)應(yīng)點(diǎn)F恰好落在CE上.∠ADF=84°,則∠BEC=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校計(jì)劃租用6輛客車送一批師生參加一年一度的哈爾濱冰雕節(jié),感受冰雕藝術(shù)的魅力.現(xiàn)有甲、乙兩種客車,它們的載客量和租金如下表.設(shè)租用甲種客車x輛,租車總費(fèi)用為y元.

甲種客車

乙種客車

載客量(人/輛)

45

30

租金(元/輛)

280

200

(1)求出y(元)與x(輛)之間的函數(shù)關(guān)系式,指出自變量的取值范圍;

(2)若該校共有240名師生前往參加,領(lǐng)隊(duì)老師從學(xué)校預(yù)支租車費(fèi)用1650元,試問(wèn)預(yù)支的租車費(fèi)用是否可以結(jié)余?若有結(jié)余,最多可結(jié)余多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=5,AD=4BD=DC=3,且DE⊥ABE,DF⊥AC于點(diǎn)F

1)請(qǐng)寫(xiě)出與A點(diǎn)有關(guān)的三個(gè)正確結(jié)論;

2DEDF在數(shù)量上有何關(guān)系?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,PA、PB為⊙O的切線,M、NPA、AB的中點(diǎn),連接MN交⊙O點(diǎn)C,連接PC交⊙OD,連接NDPBQ,求證:MNQP為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,DE∥AC,AE∥BD

1)求證:四邊形AODE是矩形;

2)若AB=12,∠BCD=120°,求四邊形AODE的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案