【題目】已知,點是第一象限內(nèi)的點,直線交軸于點,交軸負半軸于點.連接,.
(1)求的面積;
(2)求點的坐標和的值.
【答案】(1)2;(2)();m=3.
【解析】
(1)根據(jù)三角形面積公式求解;
(2)先計算出S△AOB=4,利用三角形面積公式得OA2=4,解得OA=4,則A點坐標為(,0);再利用待定系數(shù)法求直線AB的解析式,然后把P(2,m)代入可求出m的值.
解:(1)△BOP的面積=×2×2=2;
(2)∵S△AOP=6,S△POB=2,
∴S△AOB=6-2=4,
∴OAOB=4,即OA2=4,解得:OA=4,
∴A點坐標為(,0);
設直線AB的解析式為y=kx+b,
把A(-4,0)、B(0,2)代入得
,解得:,
∴直線AB的解析式為y=x+2,
把P(2,m)代入得:m=1+2=3.
科目:初中數(shù)學 來源: 題型:
【題目】已知,點O是直線AB上一點,OC、OD為從點O引出的兩條射線,∠BOD=30°,∠COD=∠AOC.
(1)如圖①,求∠AOC的度數(shù);
(2)如圖②,在∠AOD的內(nèi)部作∠MON=90°,請直接寫出∠AON與∠COM之間的數(shù)量關(guān)系 ;
(3)在(2)的條件下,若OM為∠BOC的角平分線,試說明∠AON=∠CON.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某初中學校欲向高一級學校推薦一名學生,根據(jù)規(guī)定的推薦程序:首先由本年級200名學生民主投票,每人只能推薦一人(不設棄權(quán)票),選出了票數(shù)最多的甲、乙、丙三人.投票結(jié)果統(tǒng)計如圖一:
其次,對三名候選人進行了筆試和面試兩項測試.各項成績?nèi)缦卤硭荆?/span>
測試項目 | 測試成績/分 | ||
甲 | 乙 | 丙 | |
筆試 | 92 | 90 | 95 |
面試 | 85 | 95 | 80 |
圖二是某同學根據(jù)上表繪制的一個不完全的條形圖.
請你根據(jù)以上信息解答下列問題:
(1)補全圖一和圖二;
(2)請計算每名候選人的得票數(shù);
(3)若每名候選人得一票記1分,投票、筆試、面試三項得分按照2:5:3的比確定,計算三名候選人的平均成績,成績高的將被錄取,應該錄取誰?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,過點D作對角線BD的垂線,交BC的延長線于點E,取BE的中點F,連接DF,DF=4.設AB=x,AD=y,則x2+(y﹣4)2的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學活動課上,同學們探究了角平分線的作法.下面給出三個同學的作法:
小紅的作法
如圖,∠AOB是一個任意角,在邊OA、OB上分別取OM=ON,再過點O作MN的垂線,垂足為P,則射線OP便是∠AOB的平分線.
小明的作法 如圖,∠AOB是一個任意角,在邊OA、OB上分別取OM=ON,移動角尺,使角尺兩邊相同的刻度分別與M,N重合,過角尺頂點C的射線OC便是∠AOB的平分線. |
小剛的作法 如圖,∠AOB是一個任意角,在邊OA、OB上分別取OM=ON,再分別過點M,N作OA,OB的垂線,交點為P,則射線OP便是∠AOB的平分線. |
請根據(jù)以上情境,解決下列問題
(1)小紅的作法依據(jù)是 .
(2)為說明小明作法是正確的,請幫助他完成證明過程.
證明:∵OM=ON,OC=OC, ,
∴△OMC≌△ONC( )(填推理的依據(jù))
(3)小剛的作法正確嗎?請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形中的三個頂點在⊙上,是優(yōu)弧上的一個動點(不與點、重合).
(1)當圓心在內(nèi)部,時,________.
(2)當圓心在內(nèi)部,四邊形為平行四邊形時,求的度數(shù);
(3)當圓心在外部,四邊形為平行四邊形時,請直接寫出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,
(1)請直接寫出、兩點的坐標;
(2)若把向上平移個單位,再向右平移個單位得,請在圖中畫出,并寫出點的坐標;
(3)求的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,FH是⊙O的切線,切點為F,FH∥BC,連接AF交BC于E,∠ABC的平分線BD交AF于D,連接BF.
(1)證明:AF平分∠BAC;
(2)證明:BF=FD;
(3)若EF=4,DE=3,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.
⑴求證:ΔABF≌ΔEDF;
⑵若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com