【題目】如圖,在△ABC中,BA=BC,D在邊CB上,且DB=DA=AC.
(1)如圖1,填空∠B= °,∠C= °;
(2)若M為線段BC上的點(diǎn),過(guò)M作直線MH⊥AD于H,分別交直線AB、AC與點(diǎn)N、E,如圖2
①求證:△ANE是等腰三角形;
②試寫出線段BN、CE、CD之間的數(shù)量關(guān)系,并加以證明.
【答案】(1)36,72;(2) ①詳見解析;②CD=BN+CE,理由見解析.
【解析】
試題(1)BA=BC,且DB=DA=AC可得∠C=∠ADC=∠BAC=2∠B,∠DAC=∠B,在△ADC中由三角形內(nèi)角和可求得∠B,∠C;
(2)①由(1)可知∠BAD=∠CAD=36°,且∠AHN=∠AHE=90°,可求得∠ANH=∠AEH=54°,可得AN=AE;
②由①知AN=AE,借助已知利用線段的和差可得CD=BN+CE.
試題解析:(1)∵BA=BC,
∴∠BCA=∠BAC,
∵DA=DB,
∴∠BAD=∠B,
∵AD=AC,
∴∠ADC=∠C=∠BAC=2∠B,
∴∠DAC=∠B,
∵∠DAC+∠ADC+∠C=180°,
∴2∠B+2∠B+∠B=180°,
∴∠B=36°,∠C=2∠B=72°,
故答案為:36;72;
(2)①在△ADB中,∵DB=DA,∠B=36°,
∴∠BAD=36°,
在△ACD中,∵AD=AC,
∴∠ACD=∠ADC=72°,
∴∠CAD=36°,
∴∠BAD=∠CAD=36°,
∵M(jìn)H⊥AD,
∴∠AHN=∠AHE=90°,
∴∠AEN=∠ANE=54°,
∴AN=AE,
即△ANE是等腰三角形;
②CD=BN+CE.
證明:由①知AN=AE,
又∵BA=BC,DB=AC,
∴BN=AB﹣AN=BC﹣AE,CE=AE﹣AC=AE﹣BD,
∴BN+CE=BC﹣BD=CD,
即CD=BN+CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下表三行數(shù)的規(guī)律,回答下列問(wèn)題:
(1)第1行的第四個(gè)數(shù)a是多少;第3行的第六個(gè)數(shù)b是多少;
(2)若第1行的某一列的數(shù)為c,則第2行與它同一列的數(shù)為多少;
(3)巳知第n列的三個(gè)數(shù)的和為2562,若設(shè)第1行第n列的數(shù)為x,試求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長(zhǎng)線于點(diǎn)E.
(1)求∠CBE的度數(shù);
(2)過(guò)點(diǎn)D作DF∥BE,交AC的延長(zhǎng)線于點(diǎn)F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用一條長(zhǎng)為18cm的細(xì)繩圍成一個(gè)等腰三角形.
(1)如果腰長(zhǎng)是底邊長(zhǎng)的2倍,求三角形各邊的長(zhǎng);
(2)能圍成有一邊的長(zhǎng)是4cm的等腰三角形嗎?若能,求出其他兩邊的長(zhǎng);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠MON=30°,點(diǎn)A1、A2、A3……在射線ON上,點(diǎn)B1、B2、B3……在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4……均為等邊三角形,且OA1=1.
(1)分別求出△A1B1A2、△A3B3A4的邊長(zhǎng);
(2)求△A7B7A8的周長(zhǎng)(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)為平面內(nèi)一點(diǎn),于.
(1)如圖1,直接寫出和之間的數(shù)量關(guān)系 ;
(2)如圖2,過(guò)點(diǎn)作于點(diǎn),求證:;
(3)如圖3,在(2)問(wèn)的條件下,點(diǎn)、在上,連接、、,平分,平分,若,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是△ABC的高線,CE是△ABC的角平分線,它們相交于點(diǎn)P.
(1)若∠B=40°,∠AEC=75°,求證:AB=BC;
(2)若∠BAC=90°,AP為△AEC邊EC上中線,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD,
(1)求證:∠1+∠2=90°.
(2)若∠ABD的平分線與CD的延長(zhǎng)線交于F,且∠F=55°,求∠ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形AOBO2的頂點(diǎn)A的坐標(biāo)為A(0,2),O1為正方形AOBO2的中心;以正方形AOBO2的對(duì)角線AB為邊,在AB的右側(cè)作正方形ABO3A1,O2為正方形ABO3A1的中心;再以正方形ABO3A1的對(duì)角線A1B為邊,在A1B的右側(cè)作正方形A1BB1O4,O3為正方形A1BB1O4的中心;再以正方形A1BB1O4的對(duì)角線A1B1為邊在A1B1的右側(cè)作正方形A1B1O5A2,O4為正方形A1B1O5A2的中心:…;按照此規(guī)律繼續(xù)下去,則點(diǎn)O2018的坐標(biāo)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com