【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形ABCD的頂點(diǎn)Bx軸的正半軸上,點(diǎn)A坐標(biāo)為(-4,0),點(diǎn)D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過(guò)點(diǎn)C,則k的值為______.

【答案】16

【解析】

過(guò)點(diǎn)DDHx軸,垂足為H,由已知?jiǎng)t可得H(-1,0)DH=4,根據(jù)點(diǎn)A(-4,0),可得AH=3,要賣(mài)勾股定理可求得AD長(zhǎng),再根據(jù)菱形的性質(zhì)可得DC=AD=5DC//AB,根據(jù)平移的性質(zhì)可得C(4,4),再利用待定系數(shù)法即可求得答案.

過(guò)點(diǎn)DDHx軸,垂足為H,則∠AHD=90°,

又∵D(-1,4),

H(-10),DH=4,

A(-4,0),

AH=3,

AD==5,

∵四邊形ABCD是菱形,

∴DC=AD=5,DC//AB,

∴C(44),

∵反比例函數(shù)的圖象恰好經(jīng)過(guò)點(diǎn)C

4=,

k=16,

故答案為16.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,//,且分別交對(duì)角線AC于點(diǎn)E,F,連接BE,DF

1)求證:AE=CF;

2)若BE=DE,求證:四邊形EBFD為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,AB的直徑,C上一點(diǎn),P的中點(diǎn),過(guò)點(diǎn)PAC的垂線,交AC的延長(zhǎng)線于點(diǎn)D

1)求證:DP的切線;

2)若AC=5,,AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC和△ADE按如圖所示方式放置,點(diǎn)D在△ABC內(nèi),連接BD、CDCE,且∠DCE90°.

1)如圖,當(dāng)△ABC和△ADE均為等邊三角形時(shí),試確定ADBD、CD三條線段的關(guān)系,并說(shuō)明理由;

2)如圖,當(dāng)BABC2ACDADE2AE時(shí),試確定AD、BDCD三條線段的關(guān)系,并說(shuō)明理由;

3)如圖,當(dāng)ABBCACADDEAEmnp時(shí),請(qǐng)直接寫(xiě)出AD、BDCD三條線段的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)矩形紙片,將該紙片放置在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn)P邊上的動(dòng)點(diǎn).

(1)如圖①,經(jīng)過(guò)點(diǎn)O、P折疊該紙片,得點(diǎn)和折痕.當(dāng)點(diǎn)P的坐標(biāo)為時(shí),求的度數(shù);

(2)如圖②,當(dāng)點(diǎn)P與點(diǎn)C重合時(shí),經(jīng)過(guò)點(diǎn)O、P折疊紙片,使點(diǎn)B落在點(diǎn)的位置,交于點(diǎn)M,求點(diǎn)M的坐標(biāo);

(3)過(guò)點(diǎn)P作直線,交于點(diǎn)Q,再取中點(diǎn)T,中點(diǎn)N,分別以,,,為折痕,依次折疊該紙片,折疊后點(diǎn)O的對(duì)應(yīng)點(diǎn)與點(diǎn)B的對(duì)應(yīng)點(diǎn)恰好重合,且落在線段上,A、C的對(duì)應(yīng)點(diǎn)也恰好重合,也落在線段上,求此時(shí)點(diǎn)P的坐標(biāo)(直接寫(xiě)出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象相交于點(diǎn),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn).

1)求反比例函數(shù)的表達(dá)式;

2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個(gè)交點(diǎn)為,連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一種升降熨燙臺(tái)如圖1所示,其原理是通過(guò)改變兩根支撐桿夾角的度數(shù)來(lái)調(diào)整熨燙臺(tái)的高度.圖2是這種升降熨燙臺(tái)的平面示意圖.ABCD是兩根相同長(zhǎng)度的活動(dòng)支撐桿,點(diǎn)O是它們的連接點(diǎn),OA=OC,hcm)表示熨燙臺(tái)的高度.

1)如圖21.若AB=CD=110cm,∠AOC=120°,求h的值;

2)愛(ài)動(dòng)腦筋的小明發(fā)現(xiàn),當(dāng)家里這種升降熨燙臺(tái)的高度為120cm時(shí),兩根支撐桿的夾角∠AOC74°(如圖22).求該熨燙臺(tái)支撐桿AB的長(zhǎng)度(結(jié)果精確到lcm).

(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8sin53°≈0.8,cos53°≈0.6.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yax2+bx+6經(jīng)過(guò)兩點(diǎn)A(﹣10),B30),C是拋物線與y軸的交點(diǎn).

1)求拋物線的解析式;

2)點(diǎn)Pm,n)在平面直角坐標(biāo)系第一象限內(nèi)的拋物線上運(yùn)動(dòng),設(shè)△PBC的面積為S,求S關(guān)于m的函數(shù)表達(dá)式(指出自變量m的取值范圍)和S的最大值;

3)點(diǎn)M在拋物線上運(yùn)動(dòng),點(diǎn)Ny軸上運(yùn)動(dòng),是否存在點(diǎn)M、點(diǎn)N使得∠CMN90°,且△CMN與△OBC相似,如果存在,請(qǐng)求出點(diǎn)M和點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為檢測(cè)師生體溫,在校門(mén)安裝了某型號(hào)測(cè)溫門(mén).如圖為該測(cè)溫門(mén)截面示意圖,已知測(cè)溫門(mén)AD的頂部A處距地面高為2.2m,為了解自己的有效測(cè)溫區(qū)間.身高1.6m的小聰做了如下實(shí)驗(yàn):當(dāng)他在地面N處時(shí)測(cè)溫門(mén)開(kāi)始顯示額頭溫度,此時(shí)在額頭B處測(cè)得A的仰角為18°;在地面M處時(shí),測(cè)溫門(mén)停止顯示額頭溫度,此時(shí)在額頭C處測(cè)得A的仰角為60°.求小聰在地面的有效測(cè)溫區(qū)間MN的長(zhǎng)度.(額頭到地面的距離以身高計(jì),計(jì)算精確到0.1m,sin18°≈0.31,cos18°≈0.95tan18°≈0.32

查看答案和解析>>

同步練習(xí)冊(cè)答案