【題目】已知:△ABC和△ADE按如圖所示方式放置,點(diǎn)D在△ABC內(nèi),連接BD、CD和CE,且∠DCE=90°.
(1)如圖①,當(dāng)△ABC和△ADE均為等邊三角形時(shí),試確定AD、BD、CD三條線段的關(guān)系,并說明理由;
(2)如圖②,當(dāng)BA=BC=2AC,DA=DE=2AE時(shí),試確定AD、BD、CD三條線段的關(guān)系,并說明理由;
(3)如圖③,當(dāng)AB:BC:AC=AD:DE:AE=m:n:p時(shí),請(qǐng)直接寫出AD、BD、CD三條線段的關(guān)系.
【答案】(1)CD2+BD2=AD2,理由見解析;(2)CD2+BD2=AD2,理由見解析;(3)(mCD)2+(pBD)2=(nAD)2
【解析】
(1)先判斷出∠BAD=∠CAE,進(jìn)而判斷出△ABD≌△ACE,最后用勾股定理即可得出結(jié)論;
(2)先判斷出△ABC∽△ADE,進(jìn)而得出∠BAC=∠DAE,即可判斷出△BAD∽△CAE,最后用勾股定理即可得出結(jié)論;
(3)先判斷出△ABC∽△ADE,進(jìn)而得出∠BAC=∠DAE,即可判斷出△BAD∽△CAE,最后用勾股定理即可得出結(jié)論.
解:(1)CD2+BD2=AD2,
理由:∵△ABC和△ADE是等邊三角形,
∴AB=AC,AD=AE=DE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴BD=CE,
在Rt△DCE中,
CD2+CE2=DE2,
∴CD2+BD2=AD2,
(2)CD2+BD2=AD2,
理由:∵BA=BC=2AC,DA=DE=2AE,
∴,
∴△ABC∽△ADE,
∴∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵,
∴△BAD∽△CAE,
∴=2,
∴BD=2CE,
在Rt△DCE中,CD2+CE2=DE2,
∴CD2+BD2=AD2,
(3)(mCD)2+(pBD)2=(nAD)2,
理由:∵AB:BC:AC=AD:DE:AE=m:n:p,
∴DE=AD,△ABC∽△ADE,
∴∠BAC=∠DAE,
∵,
∴△ABD∽△ACE,
∴,
∴CE=BD,
在Rt△DCE中,CD2+CE2=DE2,
∴CD2+BD2=AD2,
∴(mCD)2+(pBD)2=(nAD)2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過原點(diǎn)的直線和與反比例函數(shù)的圖象分別交于兩點(diǎn)和,連結(jié).
(1)四邊形一定是什么四邊形;(直接寫結(jié)果)
(2)四邊形可能是矩形嗎?若可能,求此時(shí)和之間的關(guān)系式;若不可能,說明理由;
(3)設(shè)是函數(shù)圖象上的任意兩點(diǎn),,請(qǐng)判斷的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,,,斜邊,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),如圖1,連接.
(1)填空: ;
(2)如圖1,連接,作,垂足為,求的長(zhǎng)度;
(3)如圖2,點(diǎn),同時(shí)從點(diǎn)出發(fā),在邊上運(yùn)動(dòng),沿路徑勻速運(yùn)動(dòng),沿路徑勻速運(yùn)動(dòng),當(dāng)兩點(diǎn)相遇時(shí)運(yùn)動(dòng)停止,已知點(diǎn)的運(yùn)動(dòng)速度為1.5單位秒,點(diǎn)的運(yùn)動(dòng)速度為1單位秒,設(shè)運(yùn)動(dòng)時(shí)間為秒,的面積為,求當(dāng)為何值時(shí)取得最大值?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在線段BC上有兩點(diǎn)E,F,在線段CB的異側(cè)有兩點(diǎn)A,D,滿足AB=CD,AE=DF,CE=BF,連接AF;
(1)連接DE,求證:四邊形AEDF是平行四邊形;
(2)若∠B=40°,∠DFC=30°,當(dāng)AF平分∠BAE時(shí),求∠BAF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn))和點(diǎn)A1.
(1)畫出一個(gè)格點(diǎn)△A1B1C1,并使它與△ABC全等且A與A1是對(duì)應(yīng)點(diǎn);
(2)畫出點(diǎn)B關(guān)于直線AC的對(duì)稱點(diǎn)D,并指出AD可以看作由AB繞A點(diǎn)經(jīng)過怎樣的旋轉(zhuǎn)而得到的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解本校初中學(xué)生在學(xué)校號(hào)召的“積極公益”活動(dòng)中周末參加公益的時(shí)間(單位:h),隨機(jī)調(diào)查了該校的部分初中學(xué)生.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(1)本次接受調(diào)查的初中學(xué)生人數(shù)為________,圖①中m的值為________;
(2)求統(tǒng)計(jì)的這部分學(xué)生參加公益的時(shí)間數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)根據(jù)統(tǒng)計(jì)的這部分學(xué)生周末參加公益時(shí)間的樣本數(shù)據(jù),若該校共有650名初中學(xué)生,估計(jì)該校在這個(gè)周末參加公益時(shí)間大于1h的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形ABCD的頂點(diǎn)B在x軸的正半軸上,點(diǎn)A坐標(biāo)為(-4,0),點(diǎn)D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過點(diǎn)C,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校團(tuán)委為了解該校七年級(jí)學(xué)生最喜歡的課余活動(dòng)情況,采用隨機(jī)抽樣的方法進(jìn)行了問卷調(diào)查,被調(diào)查學(xué)生必須從“運(yùn)動(dòng)、娛樂、閱讀、其他”四項(xiàng)中選擇其中的一項(xiàng),以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分,
活動(dòng)類型 | 頻數(shù)(人數(shù)) | 頻率 |
運(yùn)動(dòng) | 20 | |
娛樂 | 40 | |
閱讀 | ||
其他 | 0.1 |
根據(jù)以上圖表信息,解答下列問題:
(1)在被調(diào)查的學(xué)生中,最喜歡“運(yùn)動(dòng)”的學(xué)生人數(shù)為 人,最喜歡“娛樂”的學(xué)生人數(shù)占被調(diào)查學(xué)生人數(shù)的百分比為 %.
(2)本次調(diào)查的樣本容量是 ,最喜歡“其他”的學(xué)生人數(shù)為 人.
(3)若該校七年級(jí)共有360名學(xué)生,試估計(jì)最喜歡“閱讀”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,直線與軸,軸分別交于點(diǎn)A和點(diǎn)B.拋物線經(jīng)過A,B兩點(diǎn),且對(duì)稱軸為直線,拋物線與軸的另一交點(diǎn)為點(diǎn)C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)點(diǎn)E是拋物線上一動(dòng)點(diǎn),且點(diǎn)E在直線AB下方.當(dāng)△ABE的面積最大時(shí),求點(diǎn)E的坐標(biāo),及△ABE面積的最大值S;
拋物線上是否還存在其它點(diǎn)M,使△ABM的面積等于中的最大值S,若存在,求出滿足條件的點(diǎn)M的坐標(biāo);若不存在,說明理由;
(3)若點(diǎn)F為線段OB上一動(dòng)點(diǎn),直接寫出的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com