【題目】為減少環(huán)境污染,自2008年6月1日起,全國的商品零售場所開始實行“塑料購物袋有償使用制度”(以下簡稱“限塑令”).某班同學于6月上旬的一天,在某超市門口采用問卷調查的方式,隨機調查了“限塑令”實施前后,顧客在該超市用購物袋的情況,以下是根據(jù)100位顧客的100份有效答卷畫出的統(tǒng)計圖表的一部分:
“限塑令”實施后,塑料購物袋使用后的處理方式統(tǒng)計表:

處理方式

直接丟棄

直接做垃圾袋

再次購物使用

其它

選該項的人數(shù)占
總人數(shù)的百分比

5%

35%

49%

11%

請你根據(jù)以上信息解答下列問題:
(1)補全圖1,“限塑令”實施前,如果每天約有2 000人次到該超市購物.根據(jù)這100位顧客平均一次購物使用塑料購物袋的平均數(shù),估計這個超市每天需要為顧客提供多少個塑料購物袋?
(2)補全圖2,并根據(jù)統(tǒng)計圖和統(tǒng)計表說明,購物時怎樣選用購物袋,塑料購物袋使用后怎樣處理,能對環(huán)境保護帶來積極的影響.

【答案】
(1)解:補全圖1見下圖.

因為 (個),即這100位顧客平均一次購物使用塑料購物袋的平均數(shù)為3個.因為2000×3=6000,所以估計這個超市每天需要為顧客提供6000個塑料購物袋


(2)解:圖2中,使用收費塑料購物袋的人數(shù)所占百分比為25%.

例如:由圖2和統(tǒng)計表可知,購物時應盡量使用自備袋和押金式環(huán)保袋,少用塑料購物袋;塑料購物袋應盡量循環(huán)使用,以便減少塑料購物袋的使用量,為環(huán)保做貢獻


【解析】(1)根據(jù)調查的總人數(shù)100人,結合其它部分數(shù)據(jù)即可計算出5個對應的頻數(shù)是100﹣90=10;然后首先計算樣本平均數(shù),再進一步計算2000人需要的塑料袋;(2)根據(jù)總百分比是1即可計算收費塑料購物袋占:1﹣75%=25%;結合兩個統(tǒng)計圖中的數(shù)據(jù)進行合理分析,提出合理化建議即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,O是對角線的交點,AF平分BAC,DHAF于點H,交ACG,DH延長線交AB于點E,求證:BE=2OG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明在大樓45米高(即PH=45米,且PH⊥HC)的窗口P處進行觀測,測得山坡上A處的俯角為15°,山腳B處得俯角為60°,已知該山坡的坡度i(即tan∠ABC)為1: .(點P、H、B、C、A在同一個平面上.點H、B、C在同一條直線上)

(1)∠PBA的度數(shù)等于度;(直接填空)
(2)求A、B兩點間的距離(結果精確到0.1米,參考數(shù)據(jù): ≈1.414, ≈1.732).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A=60°,E,F(xiàn)分別是AB,AD的中點,DE,BF相交于點G,連接BD,CG,有下列結論:①∠BGD=120° ;②BG+DG=CG;③△BDF≌△CGB;④.其中正確的結論有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線y=x+4分別與x軸、y軸相交于點M,N,邊長為2的正方形OABC一個頂點O在坐標系的原點,直線AN與MC相交于點P,若正方形繞著點O旋轉一周,則點P到點(0,2)長度的最小值是(
A.2 ﹣2
B.3﹣2
C.
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD 內接于⊙O,BD是⊙O的直徑,過點A作⊙O的切線AE交CD的延長線于點E,DA平分∠BDE.
(1)求證:AE⊥CD;
(2)已知AE=4cm,CD=6cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ab是新規(guī)定的一種運算法則:ab=a2+ab,例如3(﹣2)=32+3×(﹣2)=3.

(1)求(﹣3)5的值;

(2)若(﹣2)x=6,求x的值;

(3)若3(2x)=﹣4+x,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】結算下列各題
(1)計算:| ﹣2|+( 1﹣(π﹣3.14)0 ;
(2)計算:[xy(3x﹣2)﹣y(x2﹣2x)]÷x2y.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB分別交y軸、x軸于A、B兩點,OA=2,tan∠ABO= ,拋物線y=﹣x2+bx+c過A、B兩點.

(1)求直線AB和這個拋物線的解析式;
(2)設拋物線的頂點為D,求△ABD的面積;
(3)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當t取何值時,MN的長度l有最大值?最大值是多少?

查看答案和解析>>

同步練習冊答案