【題目】如圖,AB是⊙O的一條弦,且AB=4 . 點(diǎn)C,E分別在⊙O上,且OC⊥AB于點(diǎn)D,∠E=30°,連接OA.
(1)求OA的長;
(2)若AF是⊙O的另一條弦,且點(diǎn)O到AF的距離為2 , 直接寫出∠BAF的度數(shù).
【答案】解:(1)∵OC⊥AB,AB=4,
∴AD=DB=2,
∵∠E=30°,
∴∠AOD=60°,∠OAB=30°,
∴OA==4;
(2)如圖,作OH⊥AF于H,
∵OA=4,OH=2,
∴∠OAF=45°,
∴∠BAF=∠OAF+∠OAB=75°,
則∠BAF′=∠OAF′﹣∠OAB=15°,
∴∠BAF的度數(shù)是75°或15°.
【解析】(1)根據(jù)垂徑定理求出AD的長,根據(jù)圓周角定理求出∠AOD的度數(shù),運(yùn)用正弦的定義解答即可;
(2)作OH⊥AF于H,根據(jù)勾股定理和等腰直角三角形的性質(zhì)求出∠OAF的度數(shù),分情況計算即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對垂徑定理的理解,了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB經(jīng)過點(diǎn)O,CD是弦,且CD⊥AB于點(diǎn)F,連接AD,過點(diǎn)B的直線與線段AD的延長線交于點(diǎn)E,且∠E=∠ACF.
(1)若CD=2 , AF=3,求⊙O的周長;
(2)求證:直線BE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面推理過程
如圖,已知DE∥BC,DF、BE分別平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
∵DE∥BC(已知)
∴∠ADE= .( )
∵DF、BE分別平分∠ADE、∠ABC,
∴∠ADF= ,
∠ABE= .( )
∴∠ADF=∠ABE
∴DF∥ .( )
∴∠FDE=∠DEB. ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長線交線段OA于點(diǎn)H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,四邊形AEBD能否為矩形?如果能,請求出點(diǎn)H的坐標(biāo);如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C,E,F(xiàn),B在同一直線上,點(diǎn)A,D在BC異側(cè),AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過⊙C上一點(diǎn)P作⊙C的切線l.當(dāng)入射光線照射在點(diǎn)P處時,產(chǎn)生反射,且滿足:反射光線與切線l的夾角和入射光線與切線l的夾角相等,點(diǎn)P稱為反射點(diǎn).規(guī)定:光線不能“穿過”⊙C,即當(dāng)入射光線在⊙C外時,只在圓外進(jìn)行反射;當(dāng)入射光線在⊙C內(nèi)時,只在圓內(nèi)進(jìn)行反射.特別地,圓的切線不能作為入射光線和反射光線.
光線在⊙C外反射的示意圖如圖1所示,其中∠1=∠2.
(1)自⊙C內(nèi)一點(diǎn)出發(fā)的入射光線經(jīng)⊙C第一次反射后的示意圖如圖2所示,P1是第1個反射點(diǎn).請在圖2中作出光線經(jīng)⊙C第二次反射后的反射光線;
(2)當(dāng)⊙O的半徑為1時,如圖3,
①第一象限內(nèi)的一條入射光線平行于x軸,且自⊙O的外部照射在其上點(diǎn)P處,此光線經(jīng)⊙O反射后,反射光線與y軸平行,則反射光線與切線l的夾角為;
②自點(diǎn)A(﹣1,0)出發(fā)的入射光線,在⊙O內(nèi)不斷地反射.若第1個反射點(diǎn)P1在第二象限,且第12個反射點(diǎn)P12與點(diǎn)A重合,則第1個反射點(diǎn)P1的坐標(biāo)為
(3)如圖4,點(diǎn)M的坐標(biāo)為(0,2),⊙M的半徑為1.第一象限內(nèi)自點(diǎn)O出發(fā)的入射光線經(jīng)⊙M反射后,反射光線與坐標(biāo)軸無公共點(diǎn),求反射點(diǎn)P的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀并回答:
科學(xué)實(shí)驗證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的角相等.如圖1,一束平行光線AB與DE射向一個水平鏡面后被反射,此時∠1=∠2,∠3=∠4.
由條件可知:∠1與∠3的大小關(guān)系是 ,理由是 ;∠2與∠4的大小關(guān)系是 ;
反射光線BC與EF的位置關(guān)系是 ,理由是 ;
(2)解決問題:
①如圖2,一束光線m射到平面鏡a上,被a反射到平面鏡b上,又被b鏡反射,若b反射出的光線n平行于m,且∠1=35°,則∠2= ,∠3= ;
在①中,若∠1=40°,則∠3= ,
由①②請你猜想:當(dāng)∠3= 時,任何射到平面鏡a上的光線m經(jīng)過平面鏡a和b的兩次反射后,入射光線m與反射光線n總是平行的?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為2,∠B=30°.動點(diǎn)P從點(diǎn)B出發(fā),沿B﹣C﹣D的路線向點(diǎn)D運(yùn)動.設(shè)△ABP的面積為y(B、P兩點(diǎn)重合時,△ABP的面積可以看做0),點(diǎn)P運(yùn)動的路程為x,則y與x之間函數(shù)關(guān)系的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com