【題目】已知,.點在上以的速度由點向點運動,同時點在上由點向點運動,它們運動的時間為.
(1)如圖①,,,若點的運動速度與點的運動速度相等,當時,與是否全等,請說明理由,并判斷此時線段和線段的位置關(guān)系;
(2)如圖②,將圖①中的“,”為改“”,其他條件不變.設(shè)點的運動速度為,是否存在實數(shù),使得與全等?若存在,求出相應(yīng)的、的值;若不存在,請說明理由.
【答案】(1)全等,PC與PQ垂直;(2)存在,或
【解析】
(1)利用SAS證得△ACP≌△BPQ,得出∠ACP=∠BPQ,進一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出結(jié)論即可;
(2)由△ACP≌△BPQ,分兩種情況:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程組求得答案即可.
解:(1)當t=1時,AP=BQ=1,BP=AC=3,
又∠A=∠B=90°,
在△ACP和△BPQ中,
,
∴△ACP≌△BPQ(SAS).
∴∠ACP=∠BPQ,
∴∠APC+∠BPQ=∠APC+∠ACP=90°.
∴∠CPQ=90°,
即線段PC與線段PQ垂直.
(2)①若△ACP≌△BPQ,
則AC=BP,AP=BQ,
,
解得,
②若△ACP≌△BQP,
則AC=BQ,AP=BP,
,
解得,
綜上所述,存在或使得△ACP與△BPQ全等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓的直徑,O為半圓的圓心,AC是弦,取弧的中點D,過點D作DE⊥AC交AC的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)當AB=10,AC=5時,求CE的長;
(3)連接CD,AB=10.當=時,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=6,sinC=,以點A為圓心,AB長為半徑作弧交AC于M,分別以B、M為圓心,以大于BM長為半徑作弧,兩弧相交于點N,射線AN與BC相交于D,則AD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,與都是等腰直角三角形,直角邊,在同一條直線上,點、分別是斜邊、的中點,點為的中點,連接,,,,.
(1)觀察猜想:
圖1中,與的數(shù)量關(guān)系是______,位置關(guān)系是______.
(2)探究證明:
將圖1中的繞著點順時針旋轉(zhuǎn)(),得到圖2,與、分別交于點、,請判斷(1)中的結(jié)論是否成立,若成立,請證明;若不成立,請說明理由.
(3)拓展延伸:
把繞點任意旋轉(zhuǎn),若,,請直接列式求出面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點E,H分別在AB,AC上,已知BC=40cm,AD=30cm,求這個正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)絡(luò)中,給出了△ABC和△DEF(網(wǎng)點為網(wǎng)格線的交點)
(1)將△ABC向左平移兩個單位長度,再向上平移三個單位長度,畫出平移后的圖形△A1B2C3;
(2)畫出以點O為對稱中心,與△DEF成中心對稱的圖形△D2E2F2;
(3)求∠C+∠E的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(-2,6),且與x軸交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標是1.
(1)求此一次函數(shù)的解析式;
(2)請直接寫出不等式(k-3)x+b>0的解集;
(3)設(shè)一次函數(shù)y=kx+b的圖象與y軸交于點M,點N在坐標軸上,當△CMN是直角三角形時,請直接寫出所有符合條件的點N的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com