【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點(diǎn)E,H分別在AB,AC上,已知BC=40cm,AD=30cm,求這個(gè)正方形的邊長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD是平行四邊形,CE∥BD交AD的延長線于點(diǎn)E,CE=AC.
(1)求證:四邊形ABCD是矩形;
(2)若AB=4,AD=3,求四邊形BCED的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)為(x1,y1),點(diǎn)N的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2,以MN為邊構(gòu)造菱形,若該菱形的兩條對角線分別平行于x軸,y軸,則稱該菱形為邊的“坐標(biāo)菱形”.
(1)已知點(diǎn)A(1,0),B(0,),則以AB為邊的“坐標(biāo)菱形”的最小內(nèi)角為______;
(2)若點(diǎn)C(2,1),點(diǎn)D在直線y=5上,以CD為邊的坐標(biāo)菱形”為正方形,求育直線CD表達(dá)式;
(3)⊙O的半徑為,點(diǎn)P的坐標(biāo)為(3,m),若在⊙O上存在一點(diǎn)Q,使得以QP為邊的“坐標(biāo)菱形”為正方形,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)P是菱形ABCD的對角線BD上的一動(dòng)點(diǎn),連接CP并延長交AD于E,交BA的延長線于點(diǎn)F.
(1)求證:△APD≌△CPD;
(2)如圖2,當(dāng)菱形ABCD變?yōu)檎叫危?/span>PC=2,tan∠PFA=時(shí),求正方形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,.點(diǎn)在上以的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)在上由點(diǎn)向點(diǎn)運(yùn)動(dòng),它們運(yùn)動(dòng)的時(shí)間為.
(1)如圖①,,,若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度相等,當(dāng)時(shí),與是否全等,請說明理由,并判斷此時(shí)線段和線段的位置關(guān)系;
(2)如圖②,將圖①中的“,”為改“”,其他條件不變.設(shè)點(diǎn)的運(yùn)動(dòng)速度為,是否存在實(shí)數(shù),使得與全等?若存在,求出相應(yīng)的、的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任意三個(gè)實(shí)數(shù)a,b,c,用min|a,b,c|表示這三個(gè)實(shí)數(shù)中最小數(shù),例如:min|-2,0,1|=-2,則:
(1)填空,min|(-2019)0,(-)-2,-|=______,如果min|3,5-x,3x+6|=3,則x的取值范圍為______;
(2)化簡:÷(x+2+)并在(1)中x的取值范圍內(nèi)選取一個(gè)合適的整數(shù)代入求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線經(jīng)過點(diǎn),交x軸于點(diǎn)A,y軸于點(diǎn)B,F為線段AB的中點(diǎn),動(dòng)點(diǎn)C從原點(diǎn)出發(fā),以每秒1個(gè)位長度的速度沿y軸正方向運(yùn)動(dòng),連接FC,過點(diǎn)F作直線FC的垂線交x軸于點(diǎn)D,設(shè)點(diǎn)C的運(yùn)動(dòng)時(shí)間為t秒.
當(dāng)時(shí),求證:;
連接CD,若的面積為S,求出S與t的函數(shù)關(guān)系式;
在運(yùn)動(dòng)過程中,直線CF交x軸的負(fù)半軸于點(diǎn)G,是否為定值?若是,請求出這個(gè)定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,E,F是對角線AC上的兩點(diǎn)且AE=CF,在①BE=DF;②AB=DE;③BE∥DF;④四邊形EBFD為菱形;⑤S△ADE=S△ABE;⑥AF=CE,這些結(jié)論中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=12,點(diǎn)E在AD邊上,且AE=8,EF⊥BE交CD于點(diǎn)F.
(1)求證:△ABE∽△DEF;
(2)求CF的長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com