【題目】如圖1,與都是等腰直角三角形,直角邊,在同一條直線上,點、分別是斜邊、的中點,點為的中點,連接,,,,.
(1)觀察猜想:
圖1中,與的數(shù)量關(guān)系是______,位置關(guān)系是______.
(2)探究證明:
將圖1中的繞著點順時針旋轉(zhuǎn)(),得到圖2,與、分別交于點、,請判斷(1)中的結(jié)論是否成立,若成立,請證明;若不成立,請說明理由.
(3)拓展延伸:
把繞點任意旋轉(zhuǎn),若,,請直接列式求出面積的最大值.
【答案】(1),;(2)結(jié)論仍成立,證明見解析;(3)的面積的最大值
【解析】
(1)延長AE交BD于點H,易證,得,,進(jìn)而得,結(jié)合中位線的性質(zhì),得,,,,進(jìn)而得,;
(2)設(shè)交于,易證,得,,進(jìn)而得,結(jié)合中位線的性質(zhì),得,,,,進(jìn)而得,;
(3)易證是等腰直角三角形,,當(dāng)、、共線時,的值最大,進(jìn)而即可求解.
(1)如圖1,延長AE交BD于點H,
∵和是等腰直角三角形,
∴,,
,
∴,
∴,
∴(SAS),
∴,,
又∵,
∴,
∵點、、分別為、、的中點,
∴,,,,
∴,
∴PM⊥AH,
∴.
故答案是:,;
(2)(1)中的結(jié)論仍成立,理由如下:
如圖②中,設(shè)交于,
∵和是等腰直角三角形,
∴,,
,
∴,
∴,
∴(SAS),
∴,
又∵,
∴,
∵點、、分別為、、的中點,
∴,,,,
∴,
∴,
∴,
∴,
∴;
(3)由(2)可知是等腰直角三角形,,
∴當(dāng)的值最大時,的值最大,的面積最大,
∴當(dāng)、、共線時,的最大值,
∴,
∴的面積的最大值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面各問題中給出的兩個變量x,y,其中y是x的函數(shù)的是
① x是正方形的邊長,y是這個正方形的面積;
② x是矩形的一邊長,y是這個矩形的周長;
③ x是一個正數(shù),y是這個正數(shù)的平方根;
④ x是一個正數(shù),y是這個正數(shù)的算術(shù)平方根.
A. ①②③B. ①②④C. ②④D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面真角坐標(biāo)系中, 有、兩點, 若在軸上取一點, 使點到點和點的距離之和最小,則點的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(1,0),B(0,2),C(-4,2),若以A,B,C,D為頂點的四邊形是平行四邊形,則點D的坐標(biāo)為________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要從甲、乙兩名同學(xué)中挑選一人參加創(chuàng)新能力大賽,在最近的五次選拔測試中, 他倆的成績分別如下表,請根據(jù)表中數(shù)據(jù)解答下列問題:
第 1 次 | 第 2 次 | 第 3 次 | 第 4 次 | 第 5 次 | 平均分 | 眾數(shù) | 中位數(shù) | 方差 | |
甲 | 60 分 | 75 分 | 100 分 | 90 分 | 75 分 | 80 分 | 75 分 | 75 分 | 190 |
乙 | 70 分 | 90 分 | 100 分 | 80 分 | 80 分 | 80 分 | 80 分 |
(1)把表格補(bǔ)充完整:
(2)在這五次測試中,成績比較穩(wěn)定的同學(xué)是多少;若將 80 分以上(含 80 分) 的成績視為優(yōu)秀,則甲、乙兩名同學(xué)在這五次測試中的優(yōu)秀率分別是多少;
(3)歷屆比賽表明,成績達(dá)到80分以上(含 80分)就很可能獲獎,成績達(dá)到 90分以上(含90分)就很可能獲得一等獎,那么你認(rèn)為選誰參加比賽比較合適?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,.點在上以的速度由點向點運動,同時點在上由點向點運動,它們運動的時間為.
(1)如圖①,,,若點的運動速度與點的運動速度相等,當(dāng)時,與是否全等,請說明理由,并判斷此時線段和線段的位置關(guān)系;
(2)如圖②,將圖①中的“,”為改“”,其他條件不變.設(shè)點的運動速度為,是否存在實數(shù),使得與全等?若存在,求出相應(yīng)的、的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知為等邊三角形,點為直線上一動點(點不與點、點重合).連接,以為邊向逆時針方向作等邊,連接,
(1)如圖1,當(dāng)點在邊上時:
①求證:;
②判斷之間的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)點在邊的延長線上時,其他條件不變,判斷之間存在的數(shù)量關(guān)系,并寫出證明過程;
(3)如圖3,當(dāng)點在邊的反向延長線上時,其他條件不變,請直接寫出之間存在的數(shù)量關(guān)系為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com