【題目】如圖,直線MN∥PQ,直線AB分別與MN,PQ相交于點A,B.小宇同學(xué)利用以下步驟作圖:
①以點A為圓心,適當(dāng)長為半徑作弧交射線AN于點C,交線段AB于點D;
②以點C為圓心,適當(dāng)長為半徑畫;然后再以點D為圓心,同樣長為半徑畫。昂髢苫≡凇NAB內(nèi)交于點E;
③作射線AE,交PQ于點F;
若AF=2,∠FAN=30°,則線段BF的長為_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車專賣店經(jīng)銷某種型號的汽車.已知該型號汽車的進價為萬元/輛,經(jīng)銷一段時間后發(fā)現(xiàn):當(dāng)該型號汽車售價定為萬元/輛時,平均每周售出輛;售價每降低萬元,平均每周多售出輛.
(1)當(dāng)售價為萬元/輛時,平均每周的銷售利潤為___________萬元;
(2)若該店計劃平均每周的銷售利潤是萬元,為了盡快減少庫存,求每輛汽車的售價.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,直線y=﹣x與反比例函數(shù)y=的圖象交于關(guān)于原點對稱的A,B兩點,已知A點的縱坐標是3.
(1)求反比例函數(shù)的表達式;
(2)將直線y=﹣x向上平移后與反比例函數(shù)在第二象限內(nèi)交于點C,如果△ABC的面積為48,求平移后的直線的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點D,DE平分∠ADB交AB于點E,過點C作CF∥AB交ED延長線于點F,若∠A=48°.
(1)求∠DBC的度數(shù);
(2)求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線l1:y=x2+bx+c與它的對稱軸x=﹣2交于點A,且經(jīng)過點B(0,﹣2).
(1)求拋物線l1的解析式;
(2)如圖1,直線y=kx+2k﹣8(k<0)與拋物線l1交于點E,F,若△AEF的面積為,求k的值;
(3)如圖2,將拋物線l1向下平移n(n>0)個單位長度得到拋物線l2,拋物線l2與y軸交于點C,過點C作x軸的平行線交拋物線l2于另一點D;拋物線l2的對稱軸與x軸的交于點M,P為線段OC上一點,若△POM與△PCD相似,并且符合該條件的點P有且只有2個,求n的值及相應(yīng)點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從O點正上方2 m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y=a(x-6)2+h.已知球網(wǎng)與O點的水平距離為9 m,高度為2.43 m,球場的邊界距O點的水平距離為18 m.
(1)當(dāng)h=2.6時,求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
(1)求y與x之間的函數(shù)表達式;
(2)設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達式(利潤=收入-成本);
(3)試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少元時獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,,.
(1)請用尺規(guī)在邊上確定一點,連接、,使平分;(保留作圖痕跡,不寫作法)
(2)判斷的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com