【題目】已知正比例函數(shù)y=kx.
(1)若函數(shù)圖象經(jīng)過第二、四象限,則k的范圍是什么?
(2)點(diǎn)(1,-2)在它的圖象上,求它的表達(dá)式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市教研室對(duì)2008年嘉興市中考數(shù)學(xué)試題的選擇題作了錯(cuò)題分析統(tǒng)計(jì),受污損的下表記錄了n位同學(xué)的錯(cuò)題分布情況:已知這n人中,平均每題有11人答錯(cuò),同時(shí)第6題答錯(cuò)的人數(shù)恰好是第5題答錯(cuò)人數(shù)的1.5倍,且第2題有80%的同學(xué)答對(duì).則第5題有 人答對(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OA=2,OC=3.
(1)求拋物線的解析式;
(2)作Rt△OBC的高OD,延長(zhǎng)OD與拋物線在第一象限內(nèi)交于點(diǎn)E,求點(diǎn)E的坐標(biāo);
(3)①在x軸上方的拋物線上,是否存在一點(diǎn)P,使四邊形OBEP是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
②在拋物線的對(duì)稱軸上,是否存在上點(diǎn)Q,使得△BEQ的周長(zhǎng)最?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在A,B兩地之間有汽車站C站,客車由A地駛往C站,貨車由B地駛往A地.兩車同時(shí)出發(fā),勻速行駛.圖2是客車、貨車離C站的路程y1,y2(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系圖象.
(1)填空:A,B兩地相距 千米;
(2)求兩小時(shí)后,貨車離C站的路程y2與行駛時(shí)間x之間的函數(shù)關(guān)系式;
(3)客、貨兩車何時(shí)相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【探索新知】
已知平面上有n(n為大于或等于2的正整數(shù))個(gè)點(diǎn)A1 , A2 , A3 , …An , 從第1個(gè)點(diǎn)A1開始沿直線滑動(dòng)到另一個(gè)點(diǎn),且同時(shí)滿足以下三個(gè)條件:①每次滑動(dòng)的距離都盡可能最大;②n次滑動(dòng)將每個(gè)點(diǎn)全部到達(dá)一次;③滑動(dòng)n次后必須回到第1個(gè)點(diǎn)A1 , 我們稱此滑動(dòng)為“完美運(yùn)動(dòng)”,且稱所有點(diǎn)為“完美運(yùn)動(dòng)”的滑動(dòng)點(diǎn),記完成n個(gè)點(diǎn)的“完美運(yùn)動(dòng)”的路程之和為Sn .
(1)如圖1,滑動(dòng)點(diǎn)是邊長(zhǎng)為a的等邊三角形三個(gè)頂點(diǎn),此時(shí)S3=;
(2)如圖2,滑動(dòng)點(diǎn)是邊長(zhǎng)為a,對(duì)角線(線段A1A2、A2A4)長(zhǎng)為b的正方形四個(gè)頂點(diǎn),此時(shí)S4= .
【深入研究】
現(xiàn)有n個(gè)點(diǎn)恰好在同一直線上,相鄰兩點(diǎn)距離都為1,
(3)如圖3,當(dāng)n=3時(shí),直線上的點(diǎn)分別為A1、A2、A3 .
為了完成“完美運(yùn)動(dòng)”,滑動(dòng)的步驟給出如圖4所示的兩種方法:
方法1:A1→A3→A2→A1 , 方法2:A1→A2→A3→A1 .
①其中正確的方法為 .
A.方法1 B.方法2 C.方法1和方法2
②完成此“完美運(yùn)動(dòng)”的S3= .
(4)當(dāng)n分別取4,5時(shí),對(duì)應(yīng)的S4= , S5=
(5)若直線上有n個(gè)點(diǎn),請(qǐng)用含n的代數(shù)式表示Sn .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,小紅將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測(cè)得AB=15,AD=12.在進(jìn)行如下操作時(shí)遇到了下面的幾個(gè)問題,請(qǐng)你幫助解決.
(1)將△EFG的頂點(diǎn)G移到矩形的頂點(diǎn)B處,再將三角形繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使E點(diǎn)落在CD邊上,此時(shí),EF恰好經(jīng)過點(diǎn)A(如圖2)求FB的長(zhǎng)度
(2)在(1)的條件下,小紅想用△EFG包裹矩形ABCD,她想了兩種包裹的方法如圖3、圖4,請(qǐng)問哪種包裹紙片的方法使得未包裹住的面積大?(紙片厚度忽略不計(jì))請(qǐng)你通過計(jì)算說服小紅。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,BD=2AD,E、F、G分別是OC、OD,AB的中點(diǎn).下列結(jié)論:①EG=EF; ②△EFG≌△GBE; ③FB平分∠EFG;④EA平分∠GEF;⑤四邊形BEFG是菱形.
其中正確的是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC , 使∠BOC=135°,將一個(gè)含45°角的直角三角尺的一個(gè)頂點(diǎn)放在點(diǎn)O處,斜邊OM與直線AB重合,另外兩條直角邊都在直線AB的下方.
(1)將圖1中的三角尺繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,如圖1所示,此時(shí)∠BOM=;在圖1中,OM是否平分∠CON?請(qǐng)說明理由;
(2)緊接著將圖2中的三角板繞點(diǎn)O逆時(shí)針繼續(xù)旋轉(zhuǎn)到圖3的位置所示,使得ON在∠AOC的內(nèi)部,請(qǐng)?zhí)骄浚骸?/span>AOM與∠CON之間的數(shù)量關(guān)系,并說明理由;
(3)將圖1中的三角板繞點(diǎn)O按每秒5°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時(shí),直線ON恰好平分銳角∠AOC,則t的值為(直接寫出結(jié)果).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com