【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長為a.直線y=bx+cx軸于E,y軸于F,a,b,c分別滿足:-(a-4)2≥0,c=++8.

(1)直線y=bx+c的解析式為________;正方形OABC的對角線的交點D的坐標(biāo)為________;

(2)若正方形OABC沿x軸負方向以每秒移動1個單位長度的速度平移,設(shè)平移的時間為t秒,問是否存在t的值,使直線EF平分正方形OABC的面積?若存在,請求出t的值;若不存在,請說明理由;

(3)點P為正方形OABC的對角線AC上的動點(端點A、C除外),PMPO,交直線ABM,在備用圖中畫圖分析,直接寫出的值.

【答案】(1)y=2x+8, D(2,2);(2)t=5;(3).

【解析】

(1)由已知條件易得:a=4,b=2,c=8,由此即可得到直線EF的解析式為:y=2x+8,B的坐標(biāo)為(4,4),結(jié)合點D是正方形OABC對角線的交點可得點D的坐標(biāo)為(2,2);

(2)由點D是正方形OABC的對稱中心可知,當(dāng)點D落在直線EF上時,直線EF平分正方形OABC的面積,由已知條件設(shè)當(dāng)點D落在EF上時的坐標(biāo)為(2-t,2),將此坐標(biāo)代入直線EF的解析式即可求得對應(yīng)的t的值;

(3)如圖2,P點作PQ∥OA,PH∥CO,交CO、ABN、Q,交CB、OAG、H,結(jié)合已知條件易證四邊形PNCG是正方形,四邊形PGBQ是矩形,四邊形OHGC是矩形,PH=PQ,∠OPH=∠MPQ,由此證得△OPH≌△MPQ,從而可得QM=OH=CG=GP=BQ=BM,結(jié)合PC=GP即可得到PC=BM,由此即可得到.

(1),

∴b=2,c=8,

直線y=bx+c的解析式為:y=2x+8;

,

,

∴a=4,

∴OA=AB=4,

B的坐標(biāo)為(4,4),

D是正方形OABC對角線的交點,

D是線段OB的交點,

D的坐標(biāo)為(2,2);

(2)存在理由如下:

如圖1,∵D是正方形OABC的對角線的交點,

∴過點D的直線都能把正方形AOCB的面積分成相等的兩部分,

∴當(dāng)正方形AOCB平移到直線EFD點時,直線正好平分正方形的面積,

設(shè)平移后的D點坐標(biāo)為(2-t,2),

把它代入直線y=2x+8,2(2-t)+8=2,

解得:t=5;

(3)如圖2,P點作PQ∥OA,PH∥CO,交CO、ABN、Q,交CB、OAG、H,

∵∠OPM=∠HPQ=90°,

∴∠OPH+∠HPM=90°,∠HPM+∠MPQ=90°,

∴∠OPH=∠MPQ,

∵AC∠BAO平分線,且PH⊥OA,PQ⊥AB,

∴PH=PQ,

△OPH△MPQ中:

∴△OPH≌△MPQ(AAS),

∴OH=QM,

∵PQ∥OA,PH∥CO,交CO、ABN、Q,CB、OAG、H,四邊形AOBC是正方形,

易得四邊形CNPG為正方形,四邊形PGBQ是矩形,四邊形OHGC是矩形,

∴PG=BQ=CG=OH=QM,

∴PG=BM,

在正方形CNPG中,PC=PG,

∴PC=BM,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作:如圖,直線AB與CD交于點O,按要求完成下列問題.

(1)用量角器量得∠AOC=   度.AB與CD的關(guān)系可記作   

(2)畫出∠BOC的角平分線OM,∠BOM=∠   =   度.

(3)在射線OM上取一點P,畫出點P到直線AB的距離PE.

(4)如圖若按“上北下南左西右東”的方位標(biāo)記,請畫出表示“南偏西30°”的射線OF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△BCE中,點A是邊BE上一點,以AB為直徑的⊙O與CE相切于點D,AD∥OC,點F為OC與⊙O的交點,連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD中,AB=6,第一次平移長方形ABCD沿AB的方向向右平移5個單位,得到長方形A1B1C1D1,第2次平移將長方形A1B1C1D1沿A1B1的方向向右平移5個單位,得到長方形A2B2C2D2,第n次平移將長方形An1Bn1Cn1Dn1沿An1Bn1的方向平移5個單位,得到長方形AnBnCnDn(n>2),若ABn的長度為56,則n=_

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,AD=7,點E,F(xiàn)分別在邊AD、BC上,且B、F關(guān)于過點E的直線對稱,如果以CD為直徑的圓與EF相切,那么AE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖所示,折疊矩形的一邊,使點落在邊的點處,如果.

(1)求FC的長;(2)求EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠MON=45°,點P是∠MON內(nèi)一點,過點P作PA⊥OM于點A、PB⊥ON于點B,且PB=2 .取OP的中點C,聯(lián)結(jié)AC并延長,交OB于點D.

(1)求證:∠ADB=∠OPB;
(2)設(shè)PA=x,OD=y,求y關(guān)于x的函數(shù)解析式;
(3)分別聯(lián)結(jié)AB、BC,當(dāng)△ABD與△CPB相似時,求PA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,在△ABC中,AB=AC,∠BAC=90°.點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
解答下列問題:
(1)當(dāng)點D在線段BC上時(與點B不重合),如圖甲,線段CF、BD之間的位置關(guān)系為 , 數(shù)量關(guān)系為
(2)當(dāng)點D在線段BC的延長線上時,如圖乙,①中的結(jié)論是否仍然成立,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寒假結(jié)束了,為了了解九年級學(xué)生寒假體育鍛煉情況,王老師調(diào)查了九年級所有學(xué)生寒假體育鍛煉時間,并隨即抽取10名學(xué)生進行統(tǒng)計,制作出如下統(tǒng)計圖表:

編號

成績

編號

成績

B

A

A

B

B

C

B

B

C

A

根據(jù)統(tǒng)計圖表信息解答下列問題:

(1)將條形統(tǒng)計圖補充完整;
(2)若用扇形統(tǒng)計圖來描述10名學(xué)生寒假體育鍛煉情況,分別求A,B,C三個等級對應(yīng)的扇形圓心角的度數(shù);
(3)已知這次統(tǒng)計中共有60名學(xué)生寒假體育鍛煉時間是A等,請你估計這次統(tǒng)計中B等,C等的學(xué)生各有多少名?

查看答案和解析>>

同步練習(xí)冊答案