精英家教網 > 初中數學 > 題目詳情

【題目】操作:如圖,直線AB與CD交于點O,按要求完成下列問題.

(1)用量角器量得∠AOC=   度.AB與CD的關系可記作   

(2)畫出∠BOC的角平分線OM,∠BOM=∠   =   度.

(3)在射線OM上取一點P,畫出點P到直線AB的距離PE.

(4)如圖若按“上北下南左西右東”的方位標記,請畫出表示“南偏西30°”的射線OF.

【答案】(1)90,ABCD;(2)COM,45;(3)見解析;(4)見解析

【解析】

1)運用量角器測量,即可得到結論

2)畫出∠BOC的角平分線OM,利用角平分線的定義,即可得到結論

3)在射線OM上取一點P,過點P作直線AB的垂線PE

4)依據南偏西30°”即可得到射線OF

1)用量角器量得∠AOC=90°,ABCD的關系可記作 ABCD

故答案為:90,ABCD

2)如圖所示,OM即為所求,BOM=COM=45°.

故答案為:COM,45

3)如圖所示,PE即為所求;

4)如圖所示OF即為所求

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】觀察下列多面體,并把下表補充完整.

名稱

三棱柱

四棱柱

五棱柱

六棱柱

圖形

頂點數

6

10

12

棱數

9

12

面數

5

8

觀察上表中的結果,你能發(fā)現、、之間有什么關系嗎?請寫出關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】求證:菱形的兩條對角線互相垂直. 已知:如圖,四邊形ABCD是菱形,對角線AC,BD交于點O.
求證:AC⊥BD.
以下是排亂的證明過程:
①又BO=DO;
②∴AO⊥BD,即AC⊥BD;
③∵四邊形ABCD是菱形;
④∴AB=AD.
證明步驟正確的順序是(

A.③→②→①→④
B.③→④→①→②
C.①→②→④→③
D.①→④→③→②

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一條不完整的數軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示,設點A,B,C所對應數的和是p.
(1)若以B為原點,寫出點A,C所對應的數,并計算p的值;若以C為原點,p又是多少?
(2)若原點O在圖中數軸上點C的右邊,且CO=28,求p.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點A(,y1)、B(2,y2)在反比例函數y=的圖像上,動點P(x,0)在x軸正半軸上運動,若AP-BP最大時,則點P的坐標是 ( )

A. ,0) B. ,0) C. ,0) D. (1,0)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點C為線段AB上一點,AC=8cm,CB=6cm,點M、N分別是AC、BC的中點.

(1)求線段MN的長;

(2)若AC+BC=acm,其他條件不變,直接寫出線段MN的長為   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一個不透明的袋子中有一個黑球a和兩個白球b,c(除顏色外其他均相同).用樹狀圖(或列表法)解答下列問題:
(1)小麗第一次從袋子中摸出一個球不放回,第二次又從袋子中摸出一個球.則小麗兩次都摸到白球的概率是多少?
(2)小強第一次從袋子中摸出一個球,摸到黑球不放回,摸到白球放回;第二次又從袋子中摸出一個球,則小強兩次都摸到白球的概率是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】平面直角坐標系xOy中有四點A(﹣2,0),B(﹣1,0),C(0,1),D(0,2)在A、B、C、D中取兩點與點O為頂點作三角形,所作三角形是等腰直角三角形的概率是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形OABC的邊長為a.直線y=bx+cx軸于E,y軸于F,a,b,c分別滿足:-(a-4)2≥0,c=++8.

(1)直線y=bx+c的解析式為________;正方形OABC的對角線的交點D的坐標為________;

(2)若正方形OABC沿x軸負方向以每秒移動1個單位長度的速度平移,設平移的時間為t秒,問是否存在t的值,使直線EF平分正方形OABC的面積?若存在,請求出t的值;若不存在,請說明理由;

(3)點P為正方形OABC的對角線AC上的動點(端點A、C除外),PMPO,交直線ABM,在備用圖中畫圖分析,直接寫出的值.

查看答案和解析>>

同步練習冊答案