【題目】如圖,在平面直角坐標系中,直線l的函數(shù)表達式為y=x,點O1的坐標為(1,0),以O1為圓心,O1O為半徑畫圓,交直線l于點P1 , 交x軸正半軸于點O2 , 以O2為圓心,O2O為半徑畫圓,交直線l于點P2 , 交x軸正半軸于點O3 , 以O3為圓心,O3O為半徑畫圓,交直線l于點P3 , 交x軸正半軸于點O4;…按此做法進行下去,其中 的長為 .
【答案】22015π
【解析】解:連接P1O1 , P2O2 , P3O3…
∵P1 是⊙O2上的點,
∴P1O1=OO1 ,
∵直線l解析式為y=x,
∴∠P1OO1=45°,
∴△P1OO1為等腰直角三角形,即P1O1⊥x軸,
同理,PnOn垂直于x軸,
∴ 為 圓的周長,
∵以O1為圓心,O1O為半徑畫圓,交x軸正半軸于點O2 , 以O2為圓心,O2O為半徑畫圓,交x軸正半軸于點O3 , 以此類推,
∴OOn=2n﹣1 ,
∴ = 2πOOn= π2n﹣1=2n﹣2π,
當n=2017時, =22015π.
故答案為 22015π.
由題意可作輔助線,連接P1O1 , P2O2 , P3O3…,根據(jù)直線l解析式為y=x可得∠P1OO1=45°,即△P1OO1為等腰直角三角形,所以有P1O1⊥x軸,同理可得PnOn垂直于x軸,弧P n On + 1的長=圓周長,所以OOn=,則弧PnOn+1=2,把n=2017代入計算即可求解。
科目:初中數(shù)學 來源: 題型:
【題目】“校園安全”受到社會的廣泛關注,某校政教處對部分學生就校園安全知識的了解程度,進行了隨機抽樣調(diào)查,并繪制了如下兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有______名;
(2)請補全折線統(tǒng)計圖,并求出扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△A′OB是將等腰直角三角形AOB的頂點A經(jīng)過一次變換后所得的等腰直角三角形,請在圖②③中,保持O,B位置不動,對點A經(jīng)過一次(或一組)變換,使變換后的△A′OB仍是等腰直角三角形.要求:作出△A′OB,并寫出點A的變換方式.
方式1:把點A向下平移4個單位;
方式2:_________________;
方式3:_________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A(,0),AB⊥軸,且AB=10,點C(0,b),,b滿足.點P(t,0)是線段AO上一點(不包含A,O)
(1)當t=5時,求PB:PC的值;
(2)當PC+PB最小時,求t的值;
(3)請根據(jù)以上的啟發(fā),解決如下問題:正數(shù)m,n滿足m+n=10,且正數(shù)=,則正數(shù)的最小值=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,所有正方形的中心均在坐標原點,且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為2,4,6,8 …,頂點依次為A1,A2,A3,A4,A5,…,則頂點A55的坐標是( )
A. (13,13) B. (-13,-13) C. (-14,-14) D. (14,14)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓柱形玻璃板,高為12cm,底面周長為18cm,在杯內(nèi)離杯底4cm的點C處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的A處,則螞蟻到達蜂蜜的最短距離( 。cm.
A.14B.15C.16D.17
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩工程隊承包一項工程,如果甲工程隊單獨施工,恰好如期完成;如果乙工程隊單獨施工就要超過6個月才能完成,現(xiàn)在甲、乙兩隊先共同施工4個月,剩下的由乙隊單獨施工,則恰好如期完成.
(1)問原來規(guī)定修好這條公路需多少長時間?
(2)現(xiàn)要求甲、乙兩個工程隊都參加這項工程,但由于受到施工場地條件限制,甲、乙兩工程隊不能同時施工.已知甲工程隊每月的施工費用為4萬元,乙工程隊每月的施工費用為2萬元.為了結算方便,要求:甲、乙的施工時間為整數(shù)個月,不超過15個月完成.當施工費用最低時,甲、乙各施工了多少個月?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)= . 例如12可以分解成1×12,2×6或3×4,因為12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)= .
(Ⅰ)如果一個正整數(shù)m是另外一個正整數(shù)n的平方,我們稱正整數(shù)m是完全平方數(shù).
求證:對任意一個完全平方數(shù)m,總有F(m)=1;
(Ⅱ)如果一個兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”;
(Ⅲ)在(2)所得“吉祥數(shù)”中,求F(t)的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對非負實數(shù)x“四舍五入”到個位的值記為[x].即當n為非負整數(shù)時,若n﹣ ≤x<n+ ,則[x]=n.如:[3.4]=3,[3.5]=4,…根據(jù)以上材料,解決下列問題:
(1)填空:
①若[x]=3,則x應滿足的條件:________;
②若[3x+1]=3,則x應滿足的條件:________;
(2)求滿足[x]= x﹣1的所有非負實數(shù)x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com