【題目】小明家客廳里裝有一種三位單極開關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,按下任意一個開關(guān)均可打開對應(yīng)的一盞電燈,因剛搬進(jìn)新房不久,不熟悉情況.
(1)若小明任意按下一個開關(guān),則下列說法正確的是 .
A.小明打開的一定是樓梯燈
B.小明打開的可能是臥室燈
C.小明打開的不可能是客廳燈
D.小明打開走廊燈的概率是
(2)若任意按下一個開關(guān)后,再按下另兩個開關(guān)中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖法或列表法加以說明.
【答案】(1)D;(2).
【解析】
(1)由小明家客廳里裝有一種三位單極開關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,直接利用概率公式求解即可求得答案;
(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與正好客廳燈和走廊燈同時亮的情況,再利用概率公式即可求得答案.
(1)∵小明家客廳里裝有一種三位單極開關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,
∴小明任意按下一個開關(guān),打開走廊燈的概率是,
故選:D;
(2)畫樹狀圖得:
∵共有6種等可能的結(jié)果,正好客廳燈和走廊燈同時亮的有2種情況,
∴正好客廳燈和走廊燈同時亮的概率是=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若對角線BD⊥CD于點(diǎn)D,求對角線AC的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于的一元二次方程有兩個實(shí)數(shù)根,且其中一個根為另一個根的2倍,則稱這樣的方程為“倍根方程”,以下關(guān)于倍根方程的說法,正確的是( )
①方程是倍根方程;②若是倍根方程,則或③若點(diǎn)在雙曲線的圖像上,則關(guān)于的方程是倍根方程;
A. ①B. ①②C. ①③D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是長方形,點(diǎn)A、C、D的坐標(biāo)分別為A(9,0)、C(0,4),D(5,0),點(diǎn)P從點(diǎn)O出發(fā),以每秒1個單位長度的速度沿O→C→B→A運(yùn)動,點(diǎn)P的運(yùn)動時間為t秒.則當(dāng)t=____秒時,△ODP是腰長為5的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列5個結(jié)論:①4a+2b+c>0;②abc<0;③b<a﹣c;④3b>2c;⑤a+b<m(am+b),(m≠1的實(shí)數(shù));其中正確結(jié)論的個數(shù)為( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=6,AD=8,點(diǎn)E是邊AD上一點(diǎn),EM⊥BC交AB于點(diǎn)M,點(diǎn)N在射線MB上,且AE是AM和AN的比例中項.
(1)如圖1,求證:∠ANE=∠DCE;
(2)如圖2,當(dāng)點(diǎn)N在線段MB之間,聯(lián)結(jié)AC,且AC與NE互相垂直,求MN的長;
(3)連接AC,如果△AEC與以點(diǎn)E、M、N為頂點(diǎn)所組成的三角形相似,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,⊙O的半徑為4,點(diǎn)A是⊙O上一點(diǎn),直線l過點(diǎn)A;P是⊙O上的一個動點(diǎn)(不與點(diǎn)A重合),過點(diǎn)P作PB⊥l于點(diǎn)B,交⊙O于點(diǎn)E,直徑PD延長線交直線l于點(diǎn)F,點(diǎn)A是的中點(diǎn).
(1)求證:直線l是⊙O的切線;
(2)若PA=6,求PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB和CD之間有一景觀池,小雙在A點(diǎn)測得池中噴泉處E點(diǎn)的俯角為42°,在C點(diǎn)測得E點(diǎn)的俯角為45°,點(diǎn)B、E、D在同一直線上.求兩幢建筑物之間的距離BD.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)E是BC邊上一動點(diǎn)(不與點(diǎn)C重合)對角線AC與BD相交于點(diǎn)O,連接AE,交BD于點(diǎn)G.
(1)根據(jù)給出的△AEC,作出它的外接圓⊙F,并標(biāo)出圓心F(不寫作法和證明,保留作圖痕跡);
(2)在(1)的條件下,連接EF.①求證:∠AEF=∠DBC;
②記t=GF2+AGGE,當(dāng)AB=6,BD=6時,求t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com