【題目】在正方形ABCD中,AB=6,連接AC,BD,P是正方形邊上或?qū)蔷上一點,若PD=2AP,則AP的長為_____.
【答案】2,2或
【解析】
根據(jù)正方形的性質(zhì)得出AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=90°,根據(jù)勾股定理求出AC、BD、求出OA、OB、OC、OD,畫出符合的三種情況,根據(jù)勾股定理求出即可.
解:∵四邊形ABCD是正方形,AB=6,
∴AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=∠DAB=90°,
在Rt△ABC中,由勾股定理得:,
.
有6種情況:①點P在AD上時,
∵AD=6,PD=2AP,
∴AP=2;
②點P在AC上時,
設(shè)AP=x,則DP=2x,
在Rt△DPO中,由勾股定理得:DP2=DO2+OP2,
,
解得:(負(fù)數(shù)舍去),
即AP=;
③點P在AB上時,
設(shè)AP=y,則DP=2y,
在Rt△APD中,由勾股定理得:AP2+AD2=DP2,
y2+62=(2y)2,
解得:y=2(負(fù)數(shù)舍去),
即AP=2;
④當(dāng)P在BC上,設(shè)BP=x,
∵DP=2AP,
即x2+6x+24=0,
△=62-4×1×24<0,此方程無解,
即當(dāng)點P在BC上時,不能使DP=2AP;
⑤P在DC上,
∵∠ADC=90°,
∴AP>DP,不能DP=2AP,
即當(dāng)P在DC上時,不能具備DP=2AP;
⑥P在BD上時,
過P作PN⊥AD于N,過P作PM⊥AB于M,
∵四邊形ABCD是正方形,
∴∠DAB=∠ANP=∠AMP=90°,
∴四邊形ANPM是矩形,
∴AM=PN,AN=PM,
∵四邊形ABCD是正方形,
∴∠ABD=45°,
∵∠PMB=90°,
∴∠MBP=∠MPB=45°,
∴BM=PM=AN,
同理DN=PN=AM,
設(shè)PM=BM=AN=x,則PN=DN=AM=6-x,
都不能DP=2AP,
∵DP=2AP,
∴由勾股定理得:,
即x2-4x+12=0,
△=(-4)2-4×1×12<0,此方程無解,
即當(dāng)P在BD上時,不能DP=2AP,
故答案為2或2或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)探究:
問題:如圖1,等邊三角形ABC的邊長為6,點O是∠ABC和∠ACB的角平分線交點,∠FOG=120°,繞點O任意旋轉(zhuǎn)∠FOG,分別交△ABC的兩邊于D,E兩點求四邊形ODBE的面積.
討論:
①甲:在∠FOG旋轉(zhuǎn)過程中,當(dāng)OF經(jīng)過點B時,OG一定經(jīng)過點C.
②乙:小明的分析有道理,這樣,我們就可以利用“ASA”證出△ODB≌△OEC.
③丙:因為△ODB≌△OEC,所以只要算出△OBC的面積就得出了四邊形ODBE的面積.
老師:同學(xué)們的思路很清晰,也很正確,在分析和解決問題時,我們經(jīng)常會借用特例作輔助線來解決一般問題請你按照探究的思路,直接寫出四邊形ODBE的面積:________.
(2)應(yīng)用:
①特例:如圖2,∠FOG的頂點O在等邊三角形ABC的邊BC上,OB=2,OC=4,邊OG⊥AC于點E,OF⊥AB于點D,求△BOD面積.
②探究:如圖3,已知∠FOG=60°,頂點O在等邊三角形ABC的邊BC上,OB=2,OC=4,記△BOD的面積為x,△COE的面積為y,求xy的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABN和△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2.
(1)求證:BD=CE;
(2)求證:∠M=∠N.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD,點E為BC中點,點F在邊CD上,連接AE、EF,若∠FEC=2∠BAE,CF=8,則線段AE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,A(a,0),B(0,b),a,b滿足,將線段AB平移得到CD,A,B的對應(yīng)點分別為C,D,其中點C在y軸負(fù)半軸上.
(1)求A,B兩點的坐標(biāo);
(2)如圖1,連AD交BC于點E,若點E在y軸正半軸上,求的值;
(3)如圖2,點F,G分別在CD,BD的延長線上,連結(jié)FG,∠BAC的角平分線與∠DFG的角平分線交于點H,求∠G與∠H之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在矩形ABCD中,AB=5,,AE⊥BD,垂足是E.點F是點E關(guān)于AB的對稱點,連接AF、BF.
(1)求AE和BE的長;
(2)若將△ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點B沿BD方向所經(jīng)過的線段長度).當(dāng)點F分別平移到線段AB、AD上時,求出相應(yīng)的m的值;
(3)如圖②,將△ABF繞點B順時針旋轉(zhuǎn)一個角α(0°<α<180°),記旋轉(zhuǎn)中的為,在旋轉(zhuǎn)過程中,設(shè)所在的直線與直線AD交于點P,與直線BD交于點Q,若△DPQ為等腰三角形,請直接寫出此時DQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點在雙曲線上,連接,分別以點和點為圓心,大于的長為半徑作弧,兩弧相交于兩點,直線交軸于點,交軸于點,連接.若,則的值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形中,是的中點,連接并延長,交的延長線于點.
(1)求證:;
(2)連接,,當(dāng)_______°時,四邊形是正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x與雙曲線y=(k>0)交于A、B兩點,A點的橫坐標(biāo)為3,則下列結(jié)論:①k=6;②A點與B點關(guān)于原點O中心對稱;③關(guān)于x的不等式<0的解集為x<﹣3或0<x<3;④若雙曲線y=(k>0)上有一點C的縱坐標(biāo)為6,則△AOC的面積為8,其中正確結(jié)論的個數(shù)( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com