【題目】如圖,正方形ABCD,點(diǎn)E為BC中點(diǎn),點(diǎn)F在邊CD上,連接AE、EF,若∠FEC=2∠BAE,CF=8,則線段AE的長為_____.
【答案】
【解析】
根據(jù)題意連接AF,過點(diǎn)A作AM⊥EF,設(shè)∠BAE=α,則∠FEC=2α,根據(jù)全等三角形的性質(zhì)得到DF=MF,同理EM=BE,設(shè)DF=a,則CD=8+a,由點(diǎn)E為BC邊上的中點(diǎn),得到BE=EC=EM=a+4,求得EF=a+4,根據(jù)勾股定理列方程即可得到結(jié)論.
解:連接AF,過點(diǎn)A作AM⊥EF,如圖所示,
∵∠FEC=2∠BAE,
設(shè)∠BAE=α,則∠FEC=2α,
∴∠BEA=90°﹣α,
∴∠AEM=90﹣α,
∴∠AEB=∠AEM,
∵AB⊥BE,AM⊥EM,
∴AB=AM=AD,
∵AF=AF,
∴Rt△AMF≌Rt△ADF(HL),
∴DF=MF,
同理EM=BE,
設(shè)DF=a,則CD=8+a,
點(diǎn)E為BC邊上的中點(diǎn),
∴BE=EC=EM=a+4,
∴EF=a+4,
∴(a+4)2+82=(a+4)2,
解得a=4(負(fù)值舍去),
∴DF=4,
∴AB=12,BE=6,
∴AE==6,
故答案為:6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程(2m+1)x2+4mx+2m﹣3=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)是否存在實(shí)數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的倒數(shù)之和等于﹣1?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育組為了了解九年級450名學(xué)生排球墊球的情況,隨機(jī)抽查了九年級部分學(xué)生進(jìn)行排球墊球測試(單位:個(gè)),根據(jù)測試結(jié)果,制成了下面不完整的統(tǒng)計(jì)圖表:
組別 | 個(gè)數(shù)段 | 頻數(shù) | 頻率 |
1 | 5 | 0.1 | |
2 | 21 | 0.42 | |
3 | |||
4 |
(1)表中的數(shù) , ;
(2)估算該九年級排球墊球測試結(jié)果小于10的人數(shù);
(3)排球墊球測試結(jié)果小于10的為不達(dá)標(biāo),若不達(dá)標(biāo)的5人中有3個(gè)男生,2個(gè)女生,現(xiàn)從這5人中隨機(jī)選出2人調(diào)查,試通過畫樹狀圖或列表的方法求選出的2人為一個(gè)男生一個(gè)女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D為AB上的一點(diǎn),以CD為直徑的⊙O交AC于E,連接BE交CD于P,交⊙O于F,連接DF,∠ABC=∠EFD.
(1)求證:AB與⊙O相切;
(2)若AD=4,BD=6,則⊙O的半徑= ;
(3)若PC=2PF,BF=a,求CP(用a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小軍同學(xué)在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
月均用水量(單位:t) | 頻數(shù) | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 |
|
|
5≤x<6 | 10 | 20% |
6≤x<7 |
| 12% |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(1)請根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;
(2)如果家庭月均用水量“大于或等于4t且小于7t”為中等用水量家庭,請你通過樣本估計(jì)總體中的中等用水量家庭大約有多少戶?
(3)從月均用水量在2≤x<3,8≤x<9這兩個(gè)范圍內(nèi)的樣本家庭中任意抽取2個(gè),求抽取出的2個(gè)家庭來自不同范圍的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點(diǎn)A(1,4)、點(diǎn)B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AB=6,連接AC,BD,P是正方形邊上或?qū)蔷上一點(diǎn),若PD=2AP,則AP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三角形中,,,以為直徑作交于點(diǎn),交于點(diǎn),直線于點(diǎn),交的延長線于點(diǎn).
(1)求證:是的切線;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=m,BC=n,將此矩形繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)θ(0°<θ<90°)得到矩形A1BC1D1,點(diǎn)A1在邊CD上.
(1)若m=2,n=1,求在旋轉(zhuǎn)過程中,點(diǎn)D到點(diǎn)D1所經(jīng)過路徑的長度;
(2)將矩形A1BC1D1繼續(xù)繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)得到矩形A2BC2D2,點(diǎn)D2在BC的延長線上,設(shè)邊A2B與CD交于點(diǎn)E,若=﹣1,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com