【題目】如圖,已知直線y=x與雙曲線y=(k>0)交于A、B兩點,A點的橫坐標(biāo)為3,則下列結(jié)論:①k=6;②A點與B點關(guān)于原點O中心對稱;③關(guān)于x的不等式<0的解集為x<﹣3或0<x<3;④若雙曲線y=(k>0)上有一點C的縱坐標(biāo)為6,則△AOC的面積為8,其中正確結(jié)論的個數(shù)( 。
A.4個B.3個C.2個D.1個
【答案】A
【解析】
①由A點橫坐標(biāo)為3,代入正比例函數(shù),可求得點A的坐標(biāo),繼而求得k值;
②根據(jù)直線和雙曲線的性質(zhì)即可判斷;
③結(jié)合圖象,即可求得關(guān)于x的不等式<0的解集;
④過點C作CD⊥x軸于點D,過點A作AE⊥軸于點E,可得S△AOC=S△OCD+S梯形AEDC-S△AOE=S梯形AEDC,由點C的縱坐標(biāo)為6,可求得點C的坐標(biāo),繼而求得答案.
①∵直線y=x與雙曲線y=(k>0)交于A、B兩點,A點的橫坐標(biāo)為3,
∴點A的縱坐標(biāo)為:y=×3=2,
∴點A(3,2),
∴k=3×2=6,
故①正確;
②∵直線y=x與雙曲線y=(k>0)是中心對稱圖形,
∴A點與B點關(guān)于原點O中心對稱
,故②正確;
③∵直線y=x與雙曲線y=(k>0)交于A、B兩點,
∴B(﹣3,﹣2),
∴關(guān)于x的不等式<0的解集為:x<﹣3或0<x<3,
故③正確;
④過點C作CD⊥x軸于點D,過點A作AE⊥x軸于點E,
∵點C的縱坐標(biāo)為6,
∴把y=6代入y=得:x=1,
∴點C(1,6),
∴S△AOC=S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=×(2+6)×(3﹣1)=8,故④正確;
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AB=6,連接AC,BD,P是正方形邊上或?qū)蔷上一點,若PD=2AP,則AP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=-(x-1)2+5,當(dāng)m≤x≤n且mn<0時,y的最小值為2m,最大值2n,則m+n的值等于( )
A.0B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=m,BC=n,將此矩形繞點B順時針方向旋轉(zhuǎn)θ(0°<θ<90°)得到矩形A1BC1D1,點A1在邊CD上.
(1)若m=2,n=1,求在旋轉(zhuǎn)過程中,點D到點D1所經(jīng)過路徑的長度;
(2)將矩形A1BC1D1繼續(xù)繞點B順時針方向旋轉(zhuǎn)得到矩形A2BC2D2,點D2在BC的延長線上,設(shè)邊A2B與CD交于點E,若=﹣1,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月24日《復(fù)仇者聯(lián)盟4》在中國大陸上映.我市江北UME影城為加大宣傳,決定在4月23日預(yù)售普通3D票400張和IMAX票100張,且預(yù)售中的IMAX的票價是普通3D票價的2倍.
(1)若影城的預(yù)售總額不低于21000元,則普通3D票的預(yù)售價格最少為多少元?
(2)影城計劃在上映當(dāng)天推出普通3D票3200張,IMAX票800張.由于預(yù)售的火爆,影城決定將普通3D票的價格在(1)中最低價格的基礎(chǔ)上增加%,而IMAX票價在(1)中IMAX票價上增加了a元,結(jié)果普通3D票的銷售量比計劃少2a%.IMAX票的銷售量與計劃保持一致,最終實際銷售額與計劃銷售額相等,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線交x軸正半軸于點A,交y軸負(fù)半軸于點B,點C在線段OA上,將沿直線BC翻折,點A與y軸上的點D(0,4)恰好重合.
(1)求直線AB的表達(dá)式.
(2)已知點E(0,3),點P是直線BC上的一個動點(點P不與點B重合),連接PD,PE,當(dāng)PDE的周長取得最小值時,求點P的坐標(biāo)。
(3)在坐標(biāo)軸上是否存在一點H,使得HAB和ABC的面積相等?若存在,求出滿足條件的點H的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了運(yùn)送防疫物資,甲、乙兩貨運(yùn)公司各派出一輛卡車,分別從距目的地240千米和270千米的兩地同時出發(fā),馳援疫區(qū).已知乙公司卡車的平均速度是甲公司卡車的平均速度的1.5倍,甲公司的卡車比乙公司的卡車晚1小時到達(dá)目的地,分別求甲、乙兩貨運(yùn)公司卡車的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,BC=3,動點從出發(fā),以每秒1個單位的速度,沿射線方向移動,作關(guān)于直線的對稱,設(shè)點的運(yùn)動時間為
(1)若
①如圖2,當(dāng)點B’落在AC上時,顯然△PCB’是直角三角形,求此時t的值
②是否存在異于圖2的時刻,使得△PCB’是直角三角形?若存在,請直接寫出所有符合題意的t的值?若不存在,請說明理由
(2)當(dāng)P點不與C點重合時,若直線PB’與直線CD相交于點M,且當(dāng)t<3時存在某一時刻有結(jié)論∠PAM=45°成立,試探究:對于t>3的任意時刻,結(jié)論∠PAM=45°是否總是成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖1和圖2,四邊形ABCD中,已知AB=AD,∠BAD=90°,點E、F分別在BC、CD上,∠EAF=45°.
(1)①如圖1,若∠B、∠ADC都是直角,把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,使AB與AD重合,直接寫出線段BE、DF和EF之間的數(shù)量關(guān)系 ;
②如圖2,若∠B、∠D都不是直角,但滿足∠B+∠D=180°,線段BE、DF和EF之間的結(jié)論是否仍然成立,若成立,請寫出證明過程;若不成立,請說明理由.
(2)拓展:如圖3,在△ABC中,∠BAC=90°,AB=AC=2.點D、E均在邊BC邊上,且∠DAE=45°,若BD=1,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com