【題目】如圖,在中,,,,點為的中點,以點為圓心作圓心角為的扇形,點恰好在弧上,則圖中陰影部分的面積為________(結果保留).
【答案】
【解析】
連接CD,證明△BDN≌△CDM,則S四邊形DMCN= S△BDC,由S陰影=S扇形FDE-S△BDC計算即可得到結論.
連接CD,如圖所示.
∵CA=CB,∠ACB=90°,點D為AB的中點,∴CD=DB,∠CDB=90°,∠DCA=∠DCB=∠B=45°.
∵∠EDF=90°,∴∠MDC+∠CDN=∠CDN+∠BDN=90°,∴∠MDC=∠NDB.
∵AB=,∴DB=DC=.
在△BDN和△CDM中,∵∠B=∠DCM,BD=CD,∠MDC=∠NDB,∴△BDN≌△CDM,∴S四邊形DMCN= S△BDC,∴S陰影= S扇形FDE-S四邊形DMCN = S扇形FDE-S△BDC==﹣1.
故答案為:﹣1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點、、在軸上,且,分別過點、、作軸的平行線,與反比例函數(shù)的圖象分別交于點、、,分別過點、、作軸的平行線,分別與軸交于點、、,連接、、,若圖中三個陰影部分的面積之和為,則________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為直線x=的拋物線經(jīng)過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點坐標;
(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)①當四邊形OEAF的面積為24時,請判斷OEAF是否為菱形?
②是否存在點E,使四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D.
(1)求頂點D的坐標(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點C.
①求拋物線的函數(shù)關系式;
②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;
③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)該玩具銷售單價定為多少元時,商場能獲得12000元的銷售利潤?
(2)該玩具銷售單價定為多少元時,商場獲得的銷售利潤最大?最大利潤是多少?
(3)若玩具廠規(guī)定該品牌玩具銷售單價不低于46元,且商場要完成不少于500件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF=∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF=,求BC和BF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com