【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)C的坐標(biāo)為(0,4),動點(diǎn)A以每秒1個(gè)單位長的速度,從點(diǎn)O出發(fā)沿x軸的正方向運(yùn)動,M是線段AC的中點(diǎn).將線段AM以點(diǎn)A為中心,沿順時(shí)針方向旋轉(zhuǎn)90°,得到線段AB.過點(diǎn)B作x軸的垂線,垂足為E,過點(diǎn)C作y軸的垂線,交直線BE于點(diǎn)D.運(yùn)動時(shí)間為t秒.

(1)當(dāng)點(diǎn)B與點(diǎn)D重合時(shí),求t的值;

(2)設(shè)BCD的面積為S,當(dāng)t為何值時(shí),S=?

(3)連接MB,當(dāng)MBOA時(shí),如果拋物線y=ax2﹣10ax的頂點(diǎn)在ABM內(nèi)部(不包括邊),求a的取值范圍.

【答案】(1)t=8(2)當(dāng)t=3或3+5時(shí),S=(3)-<a<-

【解析】解:(1,,

∴Rt△CAO∽Rt△ABE·························· 2

························· 3

2)由Rt△CAO∽Rt△ABE可知:,··········· 4

當(dāng)08時(shí),

····························· 6

當(dāng)8時(shí),

(為負(fù)數(shù),舍去).

當(dāng)時(shí),······················ 8

3)過MMN軸于N,則

當(dāng)MBOA時(shí),,··············· 9

拋物線的頂點(diǎn)坐標(biāo)為(5,).············· 10

它的頂點(diǎn)在直線上移動.

直線MB于點(diǎn)(5,2),交AB于點(diǎn)(5,1).············· 11

∴12

12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結(jié)論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論__________(填編號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上A、B兩點(diǎn)分別對應(yīng)有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB|ab|,利用數(shù)形結(jié)合思想回答下列問題:

1)數(shù)軸上表示210兩點(diǎn)之間的距離是   ,數(shù)軸上表示2和﹣10兩點(diǎn)之間的距離是   

2)數(shù)軸上,x和﹣2兩點(diǎn)之間的距離是   ;

3)若x表示一個(gè)有理數(shù),則|x1|+|x+2|有最小值嗎?若有,請求出最小值,若沒有,寫出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個(gè),小李做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是實(shí)驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):

(1)請估計(jì):當(dāng)實(shí)驗(yàn)次數(shù)為5000次時(shí),摸到白球的頻率將會接近 ;(精確到0.1)

(2)假如你摸一次,你摸到白球的概率P(摸到白球)= ;

(3)試驗(yàn)估算這個(gè)不透明的盒子里黑球有多少只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(-3,0),B(0,3),DAx軸,點(diǎn)COA上且∠CDB= OBD,則∠CBD的度數(shù)是(

A.72°B.60°C.45°D.36°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)全等多邊形的定義,我們把四個(gè)角,四條邊分別相等的兩個(gè)凸四邊形叫做全等四邊形,記作:四邊形ABCD≌四邊形A1B1C1D1

1)若四邊形ABCD≌四邊形A1B1C1D1,已知AB3,BC4,ADCD5,B90,D 60,則A1D1 ,B1 , A1C1 (直接寫出答案);

2)如圖 1,四邊形 ABEF≌四邊形CBED,連接AD BE于點(diǎn)O,連接F,求證:AOBFOE;

3)如圖 2,若ABA1B1,BCB1C1,CDC1D1,ADA1D1,BB1,求證:四邊形ABCD≌四邊形A1B1C1D1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EBC邊上的一點(diǎn),BE=4,EC=8,將正方形邊ABAE折疊刀AF,延長EFDCG,連接AG,現(xiàn)在有如下結(jié)論:①∠EAG=45°;②GC=CF;③FCAG;④SGFC=14.4;其中結(jié)論正確的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)汽車零件制造車間可以生產(chǎn)甲,乙兩種零件,生產(chǎn)4個(gè)甲種零件和3個(gè)乙種零件共獲利120元;生產(chǎn)2個(gè)甲種零件和5個(gè)乙種零件共獲利130元.

1)求生產(chǎn)1個(gè)甲種零件,1個(gè)乙種零件分別獲利多少元?

2)若該汽車零件制造車間共有工人30名,每名工人每天可生產(chǎn)甲種零件6個(gè)或乙種零件5個(gè),每名工人每天只能生產(chǎn)同一種零件,要使該車間每天生產(chǎn)的兩種零件所獲總利潤超過2800元,至少要派多少名工人去生產(chǎn)乙種零件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,斜坡AP的坡度為1:24,坡長AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測得該塔的塔頂B的仰角為45°,在坡頂A處測得該塔的塔頂B的仰角為76°求:

1坡頂A到地面PQ的距離;

2古塔BC的高度結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈097,cos76°≈024,tan76°≈401

查看答案和解析>>

同步練習(xí)冊答案