【題目】為了解學(xué)生對(duì)各種球類運(yùn)動(dòng)的喜愛(ài)程度,小明采取隨機(jī)抽樣的方法對(duì)他所在學(xué)校的部分學(xué)生進(jìn)行問(wèn)卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一種項(xiàng)目),對(duì)調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)后,繪制了下面的統(tǒng)計(jì)圖(1)和圖(2).

1)此次被調(diào)查的學(xué)生共有___人,m_____;

2)求喜歡“乒乓球”的學(xué)生的人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若該校有2000名學(xué)生,估計(jì)全校喜歡“足球”的學(xué)生大約有多少人?

【答案】15020;(25人,圖見(jiàn)解析;(3400

【解析】

1)利用喜歡籃球的人數(shù)與所占總體的百分比可得總?cè)藬?shù),利用喜歡足球的人數(shù)占總體的百分比可得的值,

2)利用總?cè)藬?shù)與各部分的人數(shù)差可得答案,依據(jù)答案補(bǔ)全條形統(tǒng)計(jì)圖即可,

3)利用樣本中喜歡足球所占的百分比乘以總?cè)藬?shù)即可得到答案.

解:(1)由(人),所以被調(diào)查的學(xué)生共有50人,

所以

故答案為:50,20

2)喜歡乒乓球的有:502010155(人)

如圖所示:

3)喜歡足球的大約有:2000400(人)

答:估計(jì)全校喜歡“足球”的學(xué)生人數(shù)為400人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,9),與y軸交于點(diǎn)A(0,5),與x軸交于點(diǎn)E,B.

(1)求二次函數(shù)y=ax2+bx+c的解析式;

(2)過(guò)點(diǎn)A作AC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)(點(diǎn)P在AC上方),作PD平行于y軸交AB于點(diǎn)D,問(wèn)當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為2,一個(gè)銳角等于60°的菱形紙片,小芳同學(xué)將一個(gè)三角形紙片的一個(gè)頂點(diǎn)與該菱形頂點(diǎn)D重合,按順時(shí)針?lè)较蛐D(zhuǎn)三角形紙片,使它的兩邊分別交CB、BA(或它們的延長(zhǎng)線)于點(diǎn)E、F,EDF=60°,當(dāng)CE=AF時(shí),如圖1小芳同學(xué)得出的結(jié)論是DE=DF

(1)繼續(xù)旋轉(zhuǎn)三角形紙片,當(dāng)CE≠AF時(shí),如圖2小芳的結(jié)論是否成立?若成立,加以證明;若不成立,請(qǐng)說(shuō)明理由;

(2)再次旋轉(zhuǎn)三角形紙片,當(dāng)點(diǎn)E、F分別在CB、BA的延長(zhǎng)線上時(shí),如圖3請(qǐng)直接寫出DE與DF的數(shù)量關(guān)系;

(3)連EF,若DEF的面積為y,CE=x,求y與x的關(guān)系式,并指出當(dāng)x為何值時(shí),y有最小值,最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖直線Lx軸、y軸分別交于點(diǎn)BA兩點(diǎn),且A、B兩點(diǎn)的坐標(biāo)分別為A03),B(-4,0).

1)請(qǐng)求出直線L的函數(shù)解析式;

2)點(diǎn)P在坐標(biāo)軸上,且△ABP的面積為12,求點(diǎn)P的坐標(biāo);

3)點(diǎn)C為直線AB上一個(gè)動(dòng)點(diǎn),是否存在使點(diǎn)Cx軸的距離為1.5若存在請(qǐng)直接寫出該點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的正方形網(wǎng)格中(每個(gè)小正方形的邊長(zhǎng)是1,小正方形的頂點(diǎn)叫作格點(diǎn)),△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o平面直角坐標(biāo)系中按要求畫圖和解答下列問(wèn)題:

1)以點(diǎn)C為旋轉(zhuǎn)中心,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得△CA1B1,畫出△CA1B1;

2)作出△ABC關(guān)于點(diǎn)A成中心對(duì)稱的△AB2C2

3)設(shè)AC2y軸交于點(diǎn)D,則△B1DC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AOBCOD均為等腰直角三角形,AOBCOD90°,點(diǎn)C、D分別在邊OAOB上的點(diǎn).連接AD,BC,點(diǎn)HBC中點(diǎn),連接OH

1)如圖1,求證:OHAD,OHAD

2)將COD繞點(diǎn)O旋轉(zhuǎn)到圖2所示位置時(shí),⑴中結(jié)論是否仍成立?若成立,證明你的結(jié)論;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小聰計(jì)劃中考后參加“我的中國(guó)夢(mèng)”夏令營(yíng)活動(dòng),需要一名家長(zhǎng)陪同,爸爸、媽媽用猜拳的方式確定由誰(shuí)陪同,即爸爸、媽媽隨機(jī)做出“石頭”、 “剪刀”“布” 三種手勢(shì)中的一種,規(guī)定:“石頭”勝“剪刀”,“剪刀” 勝“布”,“布” 勝“石頭”,手勢(shì)相同,不分勝負(fù).

(1)爸爸一次出“石頭”的概率是多少?

(2)媽媽一次獲勝的概率是多少?請(qǐng)用列表或畫樹狀圖的方法加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,王華同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點(diǎn)P時(shí),發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行12m到達(dá)Q點(diǎn)時(shí),發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部.已知王華同學(xué)的身高是1.6m,兩個(gè)路燈的高度都是9.6m.

(1)求兩個(gè)路燈之間的距離;

(2)當(dāng)王華同學(xué)走到路燈BD處時(shí),他在路燈AC下的影子長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在平面直角坐標(biāo)系中,網(wǎng)格中每一個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC的頂點(diǎn)均在格點(diǎn)上,三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-3,4),B(-2,1),C(-4,2).

(1)將△ABC先向右平移7個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,畫出第二次平移后的△;

(2)以點(diǎn)O(0,0)為對(duì)稱中心,畫出與△ABC成中心對(duì)稱的△;

(3)將點(diǎn)B繞坐標(biāo)原點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)90°至點(diǎn),則點(diǎn)的坐標(biāo)為(____________)

查看答案和解析>>

同步練習(xí)冊(cè)答案