【題目】如圖,點、分別是的邊、上的點,平分、平分

求證:;

,求證:四邊形是菱形.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

(1)由平行四邊形的性質可得AB=CD,AD=BC,且∠B=D,再由CE=AF,可得BE=DF,即可利用SAS定理判定ABE≌△CDF;

(2)首先證明四邊形AECF是平行四邊形,再根據(jù)AE=BE,可得∠ABE=BAE,由∠BAC=90°可得∠ABE+ACE=90°,BAE+EAC=90°,再根據(jù)等角的余角相等可得∠ACE=EAC,進而得到AE=EC,由一組鄰邊相等的平行四邊形是菱形證出結論.

證明:∵四邊形是平行四邊形,

,,

,

平分、平分

,,

,

;

∵四邊形是平行四邊形,

,

∴四邊形是平行四邊形,

,

,

,

,

∴平行四邊形是菱形.

∴四邊形是菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若所求的二次函數(shù)圖象與拋物線有相同的頂點,并且在對稱軸的左側,的增大而增大,在對稱軸的右側,的增大而減小,則所求二次函數(shù)的解析式為(

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長線于點E.

(1)求∠CBE的度數(shù);

(2)過點DDFBE,交AC的延長線于點F,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知DABC內(nèi)一點,CD平分∠ACB,BDCD,∠A=ABD,若AC=9,BC=5,則CD的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,,點開始沿折線的速度運動,點開始沿邊以的速度移動,如果點分別從、同時出發(fā),當其中一點到達時,另一點也隨之停止運動,設運動時間為,當________時,四邊形也為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABC 中,ABAC,∠BAC90,D、E 分別在 BCAC 邊上,連接 AD、BE 相交于點 F,且∠CADABE

(1)求證:BFAC;

(2)如圖2,連接 CF,若 EFEC,求∠CFD 的度數(shù);

(3)如圖3,在⑵的條件下,若 AE3,求 BF 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,該小組發(fā)現(xiàn)8高旗桿DE的影子EF落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開展了測算小橋所在圖的半徑的活動。小剛身高1.6,測得其影長為2.4,同時測得EG的長為3,HF的長為1,測得拱高(弧GH的中點到弦GH的距離,即MN的長)為2,求小橋所在圓的半徑。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】工藝美術中,常需設計對稱圖案.在如圖的正方形網(wǎng)格中,點,的坐標分別為.請在圖中再找一個格點,使它與已知的個格點組成軸對稱圖形,則點的坐標為________(如果滿足條件的點不止一個,請將它們的坐標都寫出來).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Aa0),B0,b),且|a+4|+b286+160

1)求ab的值;

2)如圖1,cy軸負半軸上一點,連CA,過點CCDCA,使CDCA,連BD.求證:∠CBD45°;

3)如圖2,若有一等腰RtBMN,∠BMN90°,連AN,取AN中點P,連PM、PO.試探究PMPO的關系.

查看答案和解析>>

同步練習冊答案