【題目】某工廠準(zhǔn)備購(gòu)買A、B兩種零件,已知A種零件的單價(jià)比B種零件的單價(jià)多30元,而用900元購(gòu)買A種零件的數(shù)量和用600元購(gòu)買B種零件的數(shù)量相等.
(1)求A、B兩種零件的單價(jià);
(2)根據(jù)需要,工廠準(zhǔn)備購(gòu)買A、B兩種零件共200件,工廠購(gòu)買兩種零件的總費(fèi)用不超過(guò)14700元,求工廠最多購(gòu)買A種零件多少件?
【答案】(1)A種零件的單價(jià)為90元,B種零件的單價(jià)為60元;(2)最多購(gòu)進(jìn)A種零件90件
【解析】
(1)設(shè)B種零件的單價(jià)為x元,則A零件的單價(jià)為(x+30)元,根據(jù)用900元購(gòu)買A種零件的數(shù)量和用600元購(gòu)買B種零件的數(shù)量相等,列方程求解;
(2)設(shè)購(gòu)進(jìn)A種零件m件,則購(gòu)進(jìn)B種零件(200-m)件,根據(jù)工廠購(gòu)買兩種零件的總費(fèi)用不超過(guò)14700元,列不等式求出m的取值范圍,然后求出工廠最多購(gòu)買A種零件多少件.
(1)設(shè)B種零件的單價(jià)為x元,則A零件的單價(jià)為(x+30)元.
,
解得x=60,
經(jīng)檢驗(yàn):x=60 是原分式方程的解,
x+30=90.
答:A種零件的單價(jià)為90元,B種零件的單價(jià)為60元.
(2)設(shè)購(gòu)進(jìn)A種零件m件,則購(gòu)進(jìn)B種零件(200﹣m)件.
90m+60(200﹣m)≤14700,
解得:m≤90,
m在取值范圍內(nèi),取最大正整數(shù),
m=90.
答:最多購(gòu)進(jìn)A種零件90件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過(guò)點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC= AB;
(3)點(diǎn)M是 的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MNMC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,
(1)求作⊙O,圓心O是AD的中垂線與AB的交點(diǎn),OD為半徑.(尺規(guī)作圖,不寫作法,保留痕跡)
(2)求證:BC是⊙O切線.
(3)若BD=5,DC=3,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是橘子的銷售額隨橘子賣出質(zhì)量的變化表:
質(zhì)量/千克 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | … |
銷售額/元 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | … |
(1)這個(gè)表反映了哪兩個(gè)變量之間的關(guān)系?哪個(gè)是自變量?哪個(gè)是因變量?
(2)當(dāng)橘子賣出5千克時(shí),銷售額是_______元.
(3)如果用表示橘子賣出的質(zhì)量,表示銷售額,按表中給出的關(guān)系,與之間的關(guān)系式為_(kāi)_____.
(4)當(dāng)橘子的銷售額是100元時(shí),共賣出多少千克橘子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D是BC的中點(diǎn),過(guò)D點(diǎn)的直線GF交AC于F,交AC的平行線BG于G點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請(qǐng)你判斷BE+CF與EF的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,兩正方形在數(shù)軸上運(yùn)動(dòng),起始狀態(tài)如圖所示.A、F表示的數(shù)分別為-2、10,大正方形的邊長(zhǎng)為4個(gè)單位長(zhǎng)度,小正方形的邊長(zhǎng)為2個(gè)單位長(zhǎng)度,兩正方形同時(shí)出發(fā),相向而行,小正方形的速度是大正方形速度的兩倍,兩個(gè)正方形從相遇到剛好完全離開(kāi)用時(shí)2秒.完成下列問(wèn)題:
(1)求起始位置D、E表示的數(shù);
(2)求兩正方形運(yùn)動(dòng)的速度;
(3)M、N分別是AD、EF中點(diǎn),當(dāng)正方形開(kāi)始運(yùn)動(dòng)時(shí),射線MA開(kāi)始以15°/s的速度順時(shí)針旋轉(zhuǎn)至MD結(jié)束,射線NF開(kāi)始以30°/s的速度逆時(shí)針旋轉(zhuǎn)至NE結(jié)束,若兩射線所在直線互相垂直時(shí),求MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如右圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長(zhǎng)CB交x軸于點(diǎn)A1 , 作正方形A1B1C1C;延長(zhǎng)C1B1交x軸于點(diǎn)A2 , 作正方形A2B2C2C1 , …按這樣的規(guī)律進(jìn)行下去,第2017個(gè)正方形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=1,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△A1B1C1 , 且點(diǎn)A1落在邊AB邊上,取BB1的中點(diǎn)D,連接CD,則CD的長(zhǎng)為( )
A.
B.
C.2
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一長(zhǎng)、寬、高分別是 5cm,4cm,3cm 的長(zhǎng)方體木塊,一只螞蟻要從長(zhǎng)方體的一個(gè)頂點(diǎn) A處沿長(zhǎng)方體的表面爬到長(zhǎng)方體上和 A 相對(duì)的頂點(diǎn) B 處,則需要爬行的最短路徑長(zhǎng)為( )
A. 5 cmB. cmC. 4cmD. 3cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com