【題目】如圖在△ABC中,AB=AC=13,BC=10,D是AB的中點,過點D作DE⊥AC于點E,
求:(1)△ABC的面積;
(2)DE的長?
【答案】(1)60;(2).
【解析】
(1)過A作BC的垂線,由勾股定理易求得此垂線的長,即可求出△ABC的面積;
(2)連接CD,由于AD=BD,則△ADC、△BCD等底同高,它們的面積相等,由此可得到△ACD的面積;進(jìn)而可根據(jù)△ACD的面積求出DE的長.
解:(1)過A作AF⊥BC于F,
△ABC中,AB=AC=13,AF⊥BC,則BF=FC=BC=5;
Rt△ABF中,AB=13,BF=5;
由勾股定理,得AF=12;
∴S△ABC=BCAF=60;
(2)連接CD,
∵AD=BD,
∴S△ADC=S△BCD=S△ABC=30;
∵S△ADC=ACDE=30,
即DE==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O,若∠1=38°,則∠BDE的度數(shù)為( )
A. 71° B. 76° C. 78° D. 80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC,垂足為E,若線段AE=3,則四邊形ABCD的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 BF=CE,∠B=∠E,那么添加下列一個條件后,仍無法判定△ABC≌△DEF的是( )
A. AB=DE B. AC∥DF C. ∠A=∠D D. AC=DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學(xué)生“國學(xué)經(jīng)典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經(jīng)”的概率是多少?
(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或;列表的方法進(jìn)行說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)有一個面積為150平方米的長方形養(yǎng)雞場,雞場的一邊靠墻(墻長18米),另三邊用竹籬笆圍成,在與墻平行的一邊,開一扇2米寬的門.如果竹籬笆的長為33米,求這個長方形養(yǎng)雞場與墻垂直的邊長是多少?與墻平行的邊長是多少?(列方程解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是邊長為4的正方形,點P為OA邊上任意一點(與點O、A不重合),連接CP,過點P作PM⊥CP交AB于點D,且PM=CP,過點M作MN∥AO,交BO于點N,連結(jié)ND、BM,設(shè)OP=t.
(1)求點M的坐標(biāo)(用含t的代數(shù)式表示);
(2)試判斷線段MN的長度是否隨點P的位置的變化而改變?并說明理由.
(3)當(dāng)t為何值時,四邊形BNDM的面積最;
(4)在x軸正半軸上存在點Q,使得△QMN是等腰三角形,請直接寫出不少于4個符合條件的點Q的坐標(biāo)(用含t的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,我們在“格點”直角坐標(biāo)系上可以看到,要求AB或CD的長度,可以轉(zhuǎn)化為求Rt△ABC或Rt△DEF的斜邊長.
例如:從坐標(biāo)系中發(fā)現(xiàn):D(﹣7,3),E(4,﹣3),所以DF=|5﹣(﹣3)|=8,EF=|4﹣(﹣7)|=11,所以由勾股定理可得:DE=.
(1)在圖①中請用上面的方法求線段AB的長:AB= ;
(2)在圖②中:設(shè)A(x1,y1),B(x2,y2),試用x1,x2,y1,y2表示:AC= ,BC= ,AB= ;
(3)試用(2)中得出的結(jié)論解決如下題目:已知:A(2,1),B(4,3);
①直線AB與x軸交于點D,求線段BD的長;
②C為坐標(biāo)軸上的點,且使得△ABC是以AB為邊的等腰三角形,請求出C點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)請畫出△ABC關(guān)于y軸對稱的△A′B′C′(其中A′,B′,C′分別是A,B,C的對應(yīng)點,不寫畫法);
(2)直接寫出A′,B′,C′三點的坐標(biāo):A′( ),B′( ),C′( )
(3)計算△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com